Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
2.
Nat Immunol ; 23(1): 86-98, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845392

RESUMEN

Ineffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus. BMI-1 was upregulated by germinal center B cells in chronic viral infection, correlating with changes to the accessible chromatin landscape, compared to acute infection. B cell-intrinsic deletion of Bmi1 accelerated viral clearance, reduced splenomegaly and restored splenic architecture. Deletion of Bmi1 restored c-Myc expression in B cells, concomitant with improved quality of antibody and coupled with reduced antibody-secreting cell numbers. Specifically, BMI-1-deficiency induced antibody with increased neutralizing capacity and enhanced antibody-dependent effector function. Using a small molecule inhibitor to murine BMI-1, we could deplete antibody-secreting cells and prohibit detrimental immune complex formation in vivo. This study defines BMI-1 as a crucial immune modifier that controls antibody-mediated responses in chronic infection.


Asunto(s)
Linfocitos B/inmunología , Inmunidad Humoral/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Complejo Represivo Polycomb 1/inmunología , Proteínas Proto-Oncogénicas/inmunología , Inmunidad Adaptativa/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Femenino , Centro Germinal/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Cell ; 167(2): 433-443.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27667685

RESUMEN

While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Femenino , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Activación de Macrófagos , Masculino , Persona de Mediana Edad , Polisacáridos/inmunología , Análisis por Matrices de Proteínas , Receptores de IgG/inmunología , Adulto Joven
4.
Cell ; 163(4): 988-98, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544943

RESUMEN

While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos Antivirales/sangre , Citotoxicidad Celular Dependiente de Anticuerpos , Complejo Antígeno-Anticuerpo/inmunología , Ensayos Clínicos como Asunto , Diseño de Fármacos , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/sangre , Receptores Fc/inmunología
5.
Nat Immunol ; 17(9): 1067-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455421

RESUMEN

The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Receptores KIR3DS1/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Evasión Inmune , Células Jurkat , Ligandos , Activación de Linfocitos , Cultivo Primario de Células , Receptores KIR3DS1/agonistas , Receptores KIR3DS1/genética , Latencia del Virus , Replicación Viral
6.
Trends Immunol ; 43(6): 417-419, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537983

RESUMEN

Severe coronavirus disease 2019 (COVID-19) has been associated with cytokine storms and hyperinflammation. In a recent study, Junqueira et al. provide evidence that antibody-mediated uptake of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by monocytes and macrophages may contribute to this inflammation by activating inflammasomes which trigger pyroptosis.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , Inflamasomas , ARN Viral , SARS-CoV-2
7.
Trends Immunol ; 43(10): 815-825, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995705

RESUMEN

A single dose of human papillomavirus (HPV) vaccine against HPV infection (prerequisite for cervical cancer) appears to be as efficacious as two or three doses, despite inducing lower antibody titers. Neutralizing antibodies are thought to be the primary mediator of protection, but the threshold for protection is unknown. Antibody functions beyond neutralization have not been explored for HPV vaccines. Here, we discuss the immune mechanisms of HPV vaccines, with a focus on non-neutralizing antibody effector functions. In the context of single-dose HPV vaccination where antibody is limiting, we propose that non-neutralizing antibody functions may contribute to preventing HPV infection. Understanding the immunological basis of protection for single-dose HPV vaccination will provide a rationale for implementing single-dose HPV vaccine regimens.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18 , Humanos , Infecciones por Papillomavirus/prevención & control
8.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206307

RESUMEN

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Humanos , Hemaglutininas , Anticuerpos Antivirales , Vacunación , Pruebas de Inhibición de Hemaglutinación , Vacunas de Productos Inactivados , Macaca fascicularis , Virión , Inmunoglobulina A , Inmunoglobulina G , Nucleoproteínas
9.
J Med Virol ; 96(6): e29732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874202

RESUMEN

Neutralizing antibodies (NAbs) are considered the primary mechanism of vaccine-mediated protection against human papillomaviruses (HPV), the causative agent of cervical cancer. However, the minimum level of NAb needed for protection is currently unknown. The HPV pseudovirion-based neutralization assay (PBNA) is the gold standard method for assessing HPV antibody responses but is time-consuming and labor-intensive. With the development of higher valency HPV vaccines, alternative serological assays with the capacity for multiplexing would improve efficiency and output. Here we describe a multiplex bead-based immunoassay to characterize the antibody responses to the seven oncogenic HPV types (HPV16/18/31/33/45/52/58) contained in the current licensed nonavalent HPV vaccine. This assay can measure antibody isotypes and subclasses (total IgG, IgM, IgA1-2, IgG1-4), and can be adapted to measure other antibody features (e.g., Fc receptors) that contribute to vaccine immunity. When tested with serum samples from unvaccinated and vaccinated individuals, we found high concordance between HPV-specific IgG using this multiplex assay and NAbs measured with PBNA. Overall, this assay is high-throughput, sample-sparing, and time-saving, providing an alternative to existing assays for the measurement and characterization of HPV antibody responses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunoglobulina G , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Humanos , Anticuerpos Antivirales/sangre , Inmunoensayo/métodos , Femenino , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/inmunología , Vacunas contra Papillomavirus/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Inmunoglobulina G/sangre , Papillomaviridae/inmunología , Virus del Papiloma Humano
10.
Ophthalmology ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703795

RESUMEN

PURPOSE: Defining how the in vivo immune status of peripheral tissues is shaped by the external environment has remained a technical challenge. We recently developed Functional in vivo confocal microscopy (Fun-IVCM) for dynamic, longitudinal imaging of corneal immune cells in living humans. This study investigated the effect of seasonal-driven environmental factors on the morphodynamic features of human corneal immune cell subsets. DESIGN: Longitudinal, observational clinical study. PARTICIPANTS: Sixteen healthy participants (aged 18-40 years) attended 2 visits in distinct seasons in Melbourne, Australia (Visit 1, November-December 2021 [spring-summer]; Visit 2, April-June 2022 [autumn-winter]). METHODS: Environmental data were collected over each period. Participants underwent ocular surface examinations and corneal Fun-IVCM (Heidelberg Engineering). Corneal scans were acquired at 5.5 ± 1.5-minute intervals for up to 5 time points. Time-lapse Fun-IVCM videos were created to analyze corneal immune cells, comprising epithelial T cells and dendritic cells (DCs), and stromal macrophages. Tear cytokines were analyzed using a multiplex bead-based immunoassay. MAIN OUTCOME MEASURES: Difference in the density, morphology, and dynamic parameters of corneal immune cell subsets over the study periods. RESULTS: Visit 1 was characterized by higher temperature, lower humidity, and higher air particulate and pollen levels compared with Visit 2. Clinical ocular surface parameters and the density of immune cell subsets were similar across visits. At Visit 1 , corneal epithelial DCs were larger, with a lower dendrite probing speed (0.38 ± 0.21 vs. 0.68 ± 0.33 µm/min; P < 0.001) relative to Visit 2; stromal macrophages were more circular and had less dynamic activity (Visit 1, 7.2 ± 1.9 vs. Visit 2, 10.3 ± 3.7 dancing index; P < 0.001). Corneal T cell morphodynamics were unchanged across periods. Basal tear levels of interleukin 2 and CXCL10 were relatively lower during spring-summer. CONCLUSIONS: This study identifies that the in vivo morphodynamics of innate corneal immune cells (DCs, macrophages) are modified by environmental factors, but such effects are not evident for adaptive immune cells (T cells). The cornea is a potential in vivo window to investigate season-dependent environmental influences on the human immune system. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607957

RESUMEN

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Asunto(s)
Anticuerpos Antivirales/sangre , Pueblos Indígenas/estadística & datos numéricos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Activación de Linfocitos/inmunología , Australia , Linfocitos B/inmunología , Humanos , Inmunoglobulina G/sangre , Memoria Inmunológica/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Recuento de Linfocitos , Vacunación Masiva , Riesgo , Células T Auxiliares Foliculares/inmunología , Linfocitos T/inmunología
12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893175

RESUMEN

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , COVID-19/inmunología , Camélidos del Nuevo Mundo , Humanos , Ratones , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología
13.
Immunol Cell Biol ; 101(10): 975-983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670482

RESUMEN

Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Formación de Anticuerpos , ChAdOx1 nCoV-19 , Vacunación , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Neutralizantes
14.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37477828

RESUMEN

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Vacuna BNT162 , Inmunoglobulina G , Mutación , Receptores de IgG , SARS-CoV-2/genética
15.
Infect Immun ; 90(2): e0043521, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871039

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLß13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Anticuerpos Antiprotozoarios , Niño , Eritrocitos , Humanos , Indonesia , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
16.
Trends Immunol ; 40(3): 197-211, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30745265

RESUMEN

IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.


Asunto(s)
Enfermedades Transmisibles/inmunología , Inmunoglobulina G/metabolismo , Inmunoterapia/tendencias , Inflamación/inmunología , Vacunas/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Control de Enfermedades Transmisibles , Citofagocitosis , Humanos , Inmunidad Humoral , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-35871459

RESUMEN

BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , COVID-19/diagnóstico , Niño , Humanos , Inmunoglobulina A
18.
Malar J ; 21(1): 360, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457056

RESUMEN

BACKGROUND: Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS: In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS: Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS: Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Embarazo , Femenino , Humanos , Plasmodium falciparum , Brasil/epidemiología , Plasmodium vivax , Mujeres Embarazadas , Estudios Prospectivos , Antígenos de Protozoos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Antígenos de Superficie
19.
Immunol Cell Biol ; 98(4): 276-286, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31785006

RESUMEN

Immunoglobulin (Ig) A is the most abundant antibody isotype present at mucosal surfaces and the second most abundant in human serum. In addition to preventing pathogen entry at mucosal surfaces, IgA can control and eradicate bacterial and viral infections through a variety of antibody-mediated innate effector cell mechanisms. The role of mucosal IgA in infection (e.g. neutralization) and in inflammatory homeostasis (e.g. allergy and autoimmunity) has been extensively investigated; by contrast, serum IgA is comparatively understudied. IgA binding to fragment crystallizable alpha receptor plays a dual role in the activation and inhibition of innate effector cell functions. Mounting evidence suggests that serum IgA induces potent effector functions against various bacterial and some viral infections including Neisseria meningitidis and rotavirus. Furthermore, in the era of immunotherapy, serum IgA provides an interesting alternative to classical IgG monoclonal antibodies to treat cancer and infectious pathogens. Here we discuss the role of serum IgA in infectious diseases with reference to bacterial and viral infections and the potential for IgA as a monoclonal antibody therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Enfermedades Transmisibles/inmunología , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Neoplasias/inmunología , Receptores Fc/fisiología , Secuencias de Aminoácidos/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos CD/inmunología , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Humanos , Inmunoglobulina A/química , Fragmentos Fc de Inmunoglobulinas/fisiología , Receptores Fc/sangre , Receptores Fc/química , Receptores Fc/inmunología
20.
Immunol Cell Biol ; 98(1): 12-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31742781

RESUMEN

Acute rheumatic fever (ARF) and chronic rheumatic heart disease (RHD) are autoimmune sequelae of a Group A streptococcal infection with significant global mortality and poorly understood pathogenesis. Immunoglobulin and complement deposition were observed in ARF/RHD valve tissue over 50 years ago, yet contemporary investigations have been lacking. This study applied systems immunology to investigate the relationships between the complement system and immunoglobulin in ARF. Patients were stratified by C-reactive protein (CRP) concentration into high (≥10 µg mL-1 ) and low (<10 µg mL-1 ) groups to distinguish those with clinically significant inflammatory processes from those with abating inflammation. The circulating concentrations of 17 complement factors and six immunoglobulin isotypes and subclasses were measured in ARF patients and highly matched healthy controls using multiplex bead-based immunoassays. An integrative statistical approach combining feature selection and principal component analysis revealed a linked IgG3-C4 response in ARF patients with high CRP that was absent in controls. Strikingly, both IgG3 and C4 were elevated above clinical reference ranges, suggesting these features are a marker of ARF-associated inflammation. Humoral immunity in response to M protein, an antigen implicated in ARF pathogenesis, was completely polarized to IgG3 in the patient group. Furthermore, the anti-M-protein IgG3 response was correlated with circulating IgG3 concentration, highlighting a potential role for this potent immunoglobulin subclass in disease. In conclusion, a linked IgG3-C4 response appears important in the initial, inflammatory stage of ARF and may have immediate utility as a clinical biomarker given the lack of specific diagnostic tests currently available.


Asunto(s)
Complemento C4 , Inmunidad Humoral , Inmunoglobulina G , Fiebre Reumática , Adolescente , Niño , Complemento C4/inmunología , Complemento C4/metabolismo , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Fiebre Reumática/sangre , Fiebre Reumática/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA