Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 14(12): 9498-503, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25971090

RESUMEN

Resistive switching random-access memory (ReRAM) devices based on chalcogenide solid electrolytes have recently become a promising candidate for future low-power nanoscale nonvolatile memory application. The resistive switching mechanism of ReRAM is based on the formation and rupture of conductive filament (CF) in the chalcogenide solid electrolyte layers. However, the random diffusion of metal ions makes it hard to control the CF formation, which is one of the major obstacles to improving device performance of ReRAM devices. We demonstrate the spin-coated metal nanocrystals (NCs) enhance the bipolar resistive switching (BRS) memory characteristics. Compared to the Ag/Ge0.5Se0.5/Pt structure, excellent resistive switching memory characteristics were obtained from the Ag/Ge0.5Se0.5/Ag NCs/Pt structure. Ag NCs improve the uniformity of resistance values and reduce the reset voltage and current. A stable DC endurance (> 100 cycles) and a high data retention (> 10(4) sec) were achieved by spin coating the Ag NCs on the Pt bottom electrode for ReRAMs.


Asunto(s)
Electrodos , Electrólitos , Germanio/química , Nanopartículas , Selenio/química , Plata/química
2.
J Nanosci Nanotechnol ; 15(9): 6695-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26716230

RESUMEN

We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA