Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 134(6): 981-94, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805091

RESUMEN

Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , ADN Helicasas/genética , Endodesoxirribonucleasas/metabolismo , Conversión Génica , Estructura Terciaria de Proteína , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell ; 60(6): 860-72, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26669261

RESUMEN

Complex genomic rearrangements (CGRs) are a hallmark of many human diseases. Recently, CGRs were suggested to result from microhomology-mediated break-induced replication (MMBIR), a replicative mechanism involving template switching at positions of microhomology. Currently, the cause of MMBIR and the proteins mediating this process remain unknown. Here, we demonstrate in yeast that a collapse of homology-driven break-induced replication (BIR) caused by defective repair DNA synthesis in the absence of Pif1 helicase leads to template switches involving 0-6 nt of homology, followed by resolution of recombination intermediates into chromosomal rearrangements. Importantly, we show that these microhomology-mediated template switches, indicative of MMBIR, are driven by translesion synthesis (TLS) polymerases Polζ and Rev1. Thus, an interruption of BIR involving fully homologous chromosomes in yeast triggers a switch to MMBIR catalyzed by TLS polymerases. Overall, our study provides important mechanistic insights into the initiation of MMBIR associated with genomic rearrangements, similar to those promoting diseases in humans.


Asunto(s)
Aberraciones Cromosómicas , Roturas del ADN de Cadena Simple , Nucleotidiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos , ADN Helicasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Fúngicos , Humanos , Saccharomyces cerevisiae/enzimología , Homología de Secuencia
3.
Nature ; 502(7471): 393-6, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24025768

RESUMEN

During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase δ (Polδ). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.


Asunto(s)
Intercambio Genético , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Reparación del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Conformación de Ácido Nucleico , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell ; 35(5): 716-23, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748364

RESUMEN

Fanconi anemia (FA) is characterized by cellular hypersensitivity to DNA crosslinking agents, but how the Fanconi pathway protects cells from DNA crosslinks and whether FA proteins act directly on crosslinks remain unclear. We developed a chromatin-IP-based strategy termed eChIP and detected association of multiple FA proteins with DNA crosslinks in vivo. Interdependence analyses revealed that crosslink-specific enrichment of various FA proteins is controlled by distinct mechanisms. BRCA-related FA proteins (BRCA2, FANCJ/BACH1, and FANCN/PALB2), but not FA core and I/D2 complexes, require replication for their crosslink association. FANCD2, but not FANCJ and FANCN, requires the FA core complex for its recruitment. FA core complex requires nucleotide excision repair proteins XPA and XPC for its association. Consistent with the distinct recruitment mechanism, recombination-independent crosslink repair was inversely affected in cells deficient of FANC-core versus BRCA-related FA proteins. Thus, FA proteins participate in distinct DNA damage response mechanisms governed by DNA replication status.


Asunto(s)
Proteína BRCA2/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neoplasias de la Mama/genética , Daño del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteína BRCA2/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina/métodos , Reactivos de Enlaces Cruzados/farmacología , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Femenino , Ficusina/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Proteínas Nucleares/genética , Plásmidos/metabolismo , Recombinación Genética , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
5.
Nature ; 467(7311): 108-11, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20811460

RESUMEN

If not properly processed and repaired, DNA double-strand breaks (DSBs) can give rise to deleterious chromosome rearrangements, which could ultimately lead to the tumour phenotype. DSB ends are resected in a 5' to 3' fashion in cells, to yield single-stranded DNA (ssDNA) for the recruitment of factors critical for DNA damage checkpoint activation and repair by homologous recombination. The resection process involves redundant pathways consisting of nucleases, DNA helicases and associated proteins. Being guided by recent genetic studies, we have reconstituted the first eukaryotic ATP-dependent DNA end-resection machinery comprising the Saccharomyces cerevisiae Mre11-Rad50-Xrs2 (MRX) complex, the Sgs1-Top3-Rmi1 complex, Dna2 protein and the heterotrimeric ssDNA-binding protein RPA. Here we show that DNA strand separation during end resection is mediated by the Sgs1 helicase function, in a manner that is enhanced by Top3-Rmi1 and MRX. In congruence with genetic observations, although the Dna2 nuclease activity is critical for resection, the Mre11 nuclease activity is dispensable. By examining the top3 Y356F allele and its encoded protein, we provide evidence that the topoisomerase activity of Top3, although critical for the suppression of crossover recombination, is not needed for resection either in cells or in the reconstituted system. Our results also unveil a multifaceted role of RPA, in the sequestration of ssDNA generated by DNA unwinding, enhancement of 5' strand incision, and protection of the 3' strand. Our reconstituted system should serve as a useful model for delineating the mechanistic intricacy of the DNA break resection process in eukaryotes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Saccharomyces cerevisiae/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
EMBO J ; 29(19): 3370-80, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20834227

RESUMEN

Single-stranded DNA constitutes an important early intermediate for homologous recombination and damage-induced cell cycle checkpoint activation. In Saccharomyces cerevisiae, efficient double-strand break (DSB) end resection requires several enzymes; Mre11/Rad50/Xrs2 (MRX) and Sae2 are implicated in the onset of 5'-strand resection, whereas Sgs1/Top3/Rmi1 with Dna2 and Exo1 are involved in extensive resection. However, the molecular events leading to a switch from the MRX/Sae2-dependent initiation to the Exo1- and Dna2-dependent resection remain unclear. Here, we show that MRX recruits Dna2 nuclease to DSB ends. MRX also stimulates recruitment of Exo1 and antagonizes excess binding of the Ku complex to DSB ends. Using resection assay with purified enzymes in vitro, we found that Ku and MRX regulate the nuclease activity of Exo1 in an opposite way. Efficient loading of Dna2 and Exo1 requires neither Sae2 nor Mre11 nuclease activities. However, Mre11 nuclease activity is essential for resection in the absence of extensive resection enzymes. The results provide new insights into how MRX catalyses end resection and recombination initiation.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Saccharomyces cerevisiae
7.
Arch Biochem Biophys ; 560: 1-9, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25086216

RESUMEN

Non-thermal plasma generated under atmospheric pressure produces a mixture of chemically reactive molecules and has been developed for a number of biomedical applications. Recently, plasma jet has been proposed as novel cancer therapies based on the observation that free radicals generated by plasma jet induce mitochondria-mediated apoptotic cell death. We show here that air plasma jet induces DNA double-strand breaks (DSBs) in yeast chromosomes leading to genomic instability and loss of viability, which are alleviated by Rad51, the yeast homolog of Escherichiacoli RecA recombinase, through DNA damage repair by a homologous recombination (HR) process. Hypersensitivity of rad51 mutant to air plasma was not restored by antioxidant treatment unlike sod1 mutant that was highly sensitive to reactive oxygen species (ROS) challenge, suggesting that plasma jet induces DSB-mediated cell death independent of ROS generation. These results may provide a new insight into the mechanism of air plasma jet-induced cell death.


Asunto(s)
Presión Atmosférica , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Gases em Plasma/farmacología , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Mutagénesis , Mutación , Nitrógeno/farmacología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Biomolecules ; 14(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39199369

RESUMEN

Iron is crucial for the metabolism and growth of most prokaryotic cells. The ferric uptake regulator (Fur) protein plays a central role in regulating iron homeostasis and metabolic processes in bacteria. It ensures the proper utilization of iron and the maintenance of cellular functions in response to environmental cues. Fur proteins are composed of an N-terminal DNA-binding domain (DBD) and a C-terminal dimerization domain (DD), typically existing as dimers in solution. Fur proteins have conserved metal-binding sites named S1, S2, and S3. Among them, site S2 serves as a regulatory site, and metal binding at S2 results in conformational changes. Additionally, as a transcriptional regulator, Fur specifically binds to a consensus DNA sequence called the Fur box. To elucidate the structural and functional properties of Fur proteins, various structures of metal- or DNA-bound Fur proteins or apo-Fur proteins have been determined. In this review, we focus on the structural properties of Fur proteins according to their ligand-bound state and the drug development strategies targeting Fur proteins. This information provides valuable insights for drug discovery.


Asunto(s)
Proteínas Bacterianas , Proteínas Represoras , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Hierro/metabolismo , Hierro/química , Sitios de Unión , Metales/metabolismo , Metales/química , Unión Proteica
9.
PLoS Genet ; 6(5): e1000948, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20485519

RESUMEN

The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2-4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Delta exo1Delta mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Delta exo1Delta, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Delta exo1Delta cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair.


Asunto(s)
Daño del ADN , Marcación de Gen , Telómero , Alelos , Reparación del ADN , ADN de Cadena Simple/genética , Electroforesis en Gel de Campo Pulsado , Recombinación Genética
10.
J Microbiol ; 61(12): 1013-1024, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100001

RESUMEN

Mutations present a dichotomy in their implications for cellular processes. They primarily arise from DNA replication errors or damage repair processes induced by environmental challenges. Cumulative mutations underlie genetic variations and drive evolution, yet also contribute to degenerative diseases such as cancer and aging. The mutator phenotype elucidates the heightened mutation rates observed in malignant tumors. Evolutionary adaptation, analogous to bacterial and eukaryotic systems, manifests through mutator phenotypes during changing environmental conditions, highlighting the delicate balance between advantageous mutations and their potentially detrimental consequences. Leveraging the genetic tractability of Saccharomyces cerevisiae offers unique insights into mutator phenotypes and genome instability akin to human cancers. Innovative reporter assays in yeast model organisms enable the detection of diverse genome alterations, aiding a comprehensive analysis of mutator phenotypes. Despite significant advancements, our understanding of the intricate mechanisms governing spontaneous mutation rates and preserving genetic integrity remains incomplete. This review outlines various cellular pathways affecting mutation rates and explores the role of mutator genes and mutation-derived phenotypes, particularly prevalent in malignant tumor cells. An in-depth comprehension of mutator and antimutator activities in yeast and higher eukaryotes holds promise for effective cancer control strategies.


Asunto(s)
Neoplasias , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Fenotipo , Neoplasias/genética , Neoplasias/terapia
11.
Front Microbiol ; 13: 1026780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504777

RESUMEN

Caffeine, a methylxanthine derivative, affects various physiological conditions such as cell growth, proliferation, and energy metabolism. A genome-wide screening for genes required for caffeine resistance in Schizosaccharomyces pombe revealed several candidates, including Pap1 and downstream target genes involved in caffeine efflux. We found that Yap1, a budding yeast AP-1 homolog required for oxidative stress response, has a caffeine tolerance function. Although the Yap1 mutant is not sensitive to caffeine, overexpression of Yap1 renders cells resistant to high concentrations of caffeine. Caffeine sensitivity of mutants lacking two multidrug transporters, Pdr5 or Snq2, is completely recovered by Yap1 overexpression. Among Yap1-dependent target genes, FLR1, a fluconazole-resistant gene, is necessary but not sufficient for caffeine tolerance. Low concentrations of hydrogen peroxide induce Yap1 activation, which restores cell viability against caffeine toxicity. Intriguingly, oxidative stress-mediated cellular adaptation to caffeine toxicity requires Yap1, but not Flr1. Moreover, caffeine is involved in reduction of intracellular reactive oxygen species (ROS), as well as mutation rate and Rad52 foci formation. Altogether, we identified novel reciprocal crosstalk between ROS signaling and caffeine resistance.

12.
J Microbiol Biotechnol ; 31(2): 171-180, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397827

RESUMEN

Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.


Asunto(s)
Cafeína/farmacología , Eucariontes/efectos de los fármacos , Eucariontes/genética , Inestabilidad Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Eucariontes/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Biochem Biophys Res Commun ; 392(3): 467-72, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20085751

RESUMEN

Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The Deltagrx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1(+) gene encoding a putative A-type Fe-S scaffold, in addition to mas5(+) and hsc1(+) genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2(+), but not isu1(+) and ssc1(+), complemented the growth phenotype of Deltagrx5 mutant as isa1(+) did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.


Asunto(s)
ADN Mitocondrial/metabolismo , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Cisteína/metabolismo , Glutarredoxinas/genética , Glicerol/metabolismo , Proteínas Hierro-Azufre/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
14.
J Microbiol ; 58(2): 81-91, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31875928

RESUMEN

The DNA damage checkpoint signaling pathway is a highly conserved surveillance mechanism that ensures genome integrity by sequential activation of protein kinase cascades. In mammals, the main pathway is orchestrated by two central sensor kinases, ATM and ATR, that are activated in response to DNA damage and DNA replication stress. Patients lacking functional ATM or ATR suffer from ataxia-telangiectasia (A-T) or Seckel syndrome, respectively, with pleiotropic degenerative phenotypes. In addition to DNA strand breaks, ATM and ATR also respond to oxidative DNA damage and reactive oxygen species (ROS), suggesting an unconventional function as regulators of intracellular redox status. Here, we summarize the multiple roles of ATM and ATR, and of their orthologs in Saccharomyces cerevisiae, Tel1 and Mec1, in DNA damage checkpoint signaling and the oxidative stress response, and discuss emerging ideas regarding the possible mechanisms underlying the elaborate crosstalk between those pathways. This review may provide new insights into the integrated cellular strategies responsible for maintaining genome stability in eukaryotes with a focus on the yeast model organism.


Asunto(s)
Puntos de Control del Ciclo Celular , Daño del ADN , Células Eucariotas/metabolismo , Inestabilidad Genómica , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Reparación del ADN/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
15.
FEBS J ; 287(5): 878-896, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31472097

RESUMEN

Glucose limitation is a major stress condition that cells must respond to by altering their metabolism to ensure survival. Rsv1 is a zinc finger protein previously shown to be required for survival during stationary phase. In this study, we present a novel mechanism regulated by Rsv1 in the fission yeast Schizosaccharomyces pombe that is involved in altering glucose metabolic flux. We found that rsv1 gene expression is induced by Rst2 and Atf1, two transcription factors regulated by the cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase (MAPK) cascade, respectively. The downstream target genes of Rsv1 were identified by genome-wide ChIP sequencing of Rsv1-bound DNA sites and RNA sequencing analysis of Rsv1-dependent transcripts that were differentially expressed under glucose starvation. Rsv1 directly regulated the expression of at least 21 genes that mostly encode transporters and proteins related to sugar metabolism. Among these, gcd1, which encodes glucose dehydrogenase in the gluconate shunt for the pentose phosphate pathway, was most remarkably repressed by Rsv1. The defect in survival of Δrsv1 mutant under glucose starvation condition was mitigated by additional deletion of a gcd1, idn1, or a gene for a putative lactonase (SPCC16c4.10), suggesting the critical importance of downregulating the gluconate shunt and pentose phosphate pathway for long-term survival. These results show an intricate response to glucose starvation: increasing the synthesis of a transcription factor via two signal transduction pathways, which sheds light on the importance of remodeling a metabolic circuit to secure glucose for cell survival.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Western Blotting , Metabolismo de los Hidratos de Carbono/genética , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
16.
Nephrology (Carlton) ; 14(3): 321-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19444966

RESUMEN

AIM: We performed a retrospective study to examine the association between the metabolic syndrome (MS)and risk for the development of chronic kidney disease (CKD). METHODS: This cohort study included 60 921 healthy adults recruited from two health promotion centres.Anthropometric measures, blood pressure, fasting glucose, lipid profile and serum creatinine were evaluated. The glomerular filtration rate was estimated (eGFR) using the abbreviated equation developed by the Modification of Diet in Renal Disease (MDRD) formula. CKD was defined as an eGFR of <60 mL/min per 1.73 m2 or the presence of proteinuria. RESULTS: The prevalence of MS and CKD was 19.0% and 7.2% respectively. Those with MS had a higher prevalence of CKD (11.0% vs 6.3%, P < 0.001) than those without MS. As the number of MS components increased, the prevalence of CKD increased and the eGFR decreased. The multiple linear analyses showed that each of the components of the MS was negatively correlated with the eGFR. Unadjusted and multivariate adjusted associations were identified between MS and CKD. Individuals with MS had a multivariate adjusted odds ratio of 1.680 (95% confidence interval, 0.566-1.801) for CKD compared with those without MS. CONCLUSION: Our findings, which were obtained from a large Korean cohort, suggest that MS was associated with CKD.


Asunto(s)
Enfermedades Renales/etiología , Síndrome Metabólico/complicaciones , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , HDL-Colesterol/sangre , Enfermedad Crónica , Estudios de Cohortes , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Triglicéridos/sangre
17.
J Microbiol ; 57(1): 9-17, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30594981

RESUMEN

Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.


Asunto(s)
Reparación del ADN , Neoplasias/terapia , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutaciones Letales Sintéticas , Animales , Terapia Biológica , Daño del ADN , Humanos , Neoplasias/genética , Neoplasias/metabolismo
18.
Free Radic Biol Med ; 129: 97-106, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30223018

RESUMEN

A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.


Asunto(s)
ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Inestabilidad Genómica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Superóxido Dismutasa-1/genética , 4-Nitroquinolina-1-Óxido/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Hongos/metabolismo , Recombinación Homóloga , Peróxido de Hidrógeno/farmacología , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Paraquat/farmacología , Fleomicinas/farmacología , Quinolonas/farmacología , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Reparación del ADN por Recombinación/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/deficiencia
19.
J Microbiol ; 55(6): 409-416, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28281199

RESUMEN

To deal with chemically reactive oxygen molecules constantly threatening aerobic life, cells are readily equipped with elaborate biological antioxidant systems. Superoxide dismutase is a metalloenzyme catalytically eliminating superoxide radical as a first-line defense mechanism against oxidative stress. Multiple different SOD isoforms have been developed throughout evolution to play distinct roles in separate subcellular compartments. SOD is not essential for viability of most aerobic organisms and intriguingly found even in strictly anaerobic bacteria. Sod1 has recently been known to play important roles as a nuclear transcription factor, an RNA binding protein, a synthetic lethal interactor, and a signal modulator in glucose metabolism, most of which are independent of its canonical function as an antioxidant enzyme. In this review, recent advances in understanding the unconventional role of Sod1 are highlighted and discussed with an emphasis on its genetic crosstalk with DNA damage repair/checkpoint pathways. The budding yeast Saccharomyces cerevisiae has been successfully used as an efficient tool and a model organism to investigate a number of novel functions of Sod1.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo/fisiología , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1/metabolismo , Isoformas de Proteínas , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción
20.
Artículo en Inglés | MEDLINE | ID: mdl-28127380

RESUMEN

Interest in marine bioresources is increasing in the drug development sector. In particular, marine sponges produce a wide range of unique metabolites that enable them to survive in challenging environments, which makes them attractive sources of candidate pharmaceuticals. In previous study, we investigated over 40 marine specimens collected in Micronesia and provided by the Korean Institute of Ocean Science and Technology, for their antiproliferative effects on various cancer cell lines, and Lipastrotethya sp. extract (LSSE) was found to have a marked antiproliferative effect. In the present study, we investigated the mechanism responsible for its anticancer effect on wild-type p53 (WT) or p53 knockout (KO) HCT116 cells. LSSE inhibited cell viability and induced apoptotic cell death more so in HCT116 p53 KO cells than the WT. HCT116 WT cells treated with LSSE underwent apoptosis associated with the induction of p53 and its target genes. On the other hand, in HCT116 p53 KO cells, LSSE reduced mTOR and Bcl-2 and increased Beclin-1 and LC3-II protein levels, suggesting autophagy induction. These results indicate that the mechanisms responsible for the anticancer effect of LSSE depend on p53 status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA