Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Sci Food Agric ; 102(14): 6771-6779, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35638177

RESUMEN

BACKGROUND: The wild bitter gourd (WBG) is a commonly consumed vegetable in Asia that has antioxidant and hypoglycemic properties. The present study aimed to investigate the anti-adipogenic activities of isolated compounds from WBG on 8-day differentiated cultures of 3 T3-L1 adipocytes that were then stained with Oil Red O (ORO) or diamidino-2-phenylindole (DAPI). RESULTS: ORO stains of the methanol extracts of de-seeded HM86 cultivar of WBG (WBG-M) and the ethyl acetate fractions (WBG-M-EA) showed anti-adipogenic activities against differentiated adipocytes. Two chlorophyll-degraded compounds, pheophorbide a (1) and pyropheophorbide a (2), were isolated from WBG-M-EA. Treatments with 1 (5, 10, and 20 µmol L-1 ) and 2 (2.5, 5, and 10 µmol L-1 ) showed dose-dependent reductions in lipid accumulations and reduced nuclear DAPI stains in differentiated 3 T3-L1 adipocytes. The concentrations for 50% inhibition against lipid accumulations of 1 and 2, respectively, were 16.05 and 7.04 µmol L-1 . Treatments with 1 and 2 showed enhanced lactate dehydrogenase release in the first 4-day cell mitotic clonal expansions during the differentiating cultural processes, although the effect was less on the non-differentiating cultural processes. Thus, 1 and 2 were more toxic to differentiating adipocytes than to non-differentiated pre-adipocytes, which partly resulted in anti-adipogenic activities with lowered lipid accumulations. CONCLUSION: Both 1 and 2 showed anti-adipogenic activities in cell models. These chlorophyll-degraded compounds commonly exist in several vegetables during storage or edible seaweeds, which will provide resources for further investigations aiming to test anti-obesity in animal studies. © 2022 Society of Chemical Industry.


Asunto(s)
Momordica charantia , Animales , Antioxidantes , Clorofila/análogos & derivados , Hipoglucemiantes/farmacología , Lactato Deshidrogenasas , Lípidos , Metanol , Momordica charantia/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
2.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499307

RESUMEN

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5ß,19-epoxycucurbita-6,23-dien-3ß,19,25-triol (Kuguacin R; KR) and 3ß,7ß,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1ß, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1ß-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Cucurbitacinas/química , Cucurbitacinas/farmacología , Inflamación/tratamiento farmacológico , Momordica charantia/química , Triterpenos/química , Triterpenos/farmacología , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/inmunología , Acné Vulgar/microbiología , Animales , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Glicósidos/química , Glicósidos/farmacología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inflamación/inmunología , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Propionibacteriaceae/patogenicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1
3.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577123

RESUMEN

Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify bioactive compounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfractions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected to separation and purification by using different chromatographic methods. Consequently, 5ß,19-epoxycucurbita-6,23(E),25(26)-triene-3ß,19(R)-diol (charantadiol A) was identified and isolated from the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 productions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory agent for modulating P. gingivalis-induced inflammation.


Asunto(s)
Monocitos , Porphyromonas gingivalis , Animales , Antiinflamatorios/farmacología , Calor , Ratones , Momordica charantia , Periodontitis
4.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961947

RESUMEN

Cutibacterium acnes (formerly Propionibacterium acnes) is a key pathogen involved in the development and progression of acne inflammation. The numerous bioactive properties of wild bitter melon (WBM) leaf extract and their medicinal applications have been recognized for many years. In this study, we examined the suppressive effect of a methanolic extract (ME) of WBM leaf and fractionated components thereof on live C. acnes-induced in vitro and in vivo inflammation. Following methanol extraction of WBM leaves, we confirmed anti-inflammatory properties of ME in C. acnes-treated human THP-1 monocyte and mouse ear edema models. Using a bioassay-monitored isolation approach and a combination of liquid-liquid extraction and column chromatography, the ME was then separated into n-hexane, ethyl acetate, n-butanol and water-soluble fractions. The hexane fraction exerted the most potent anti-inflammatory effect, suppressing C. acnes-induced interleukin-8 (IL-8) production by 36%. The ethanol-soluble fraction (ESF), which was separated from the n-hexane fraction, significantly inhibited C. acnes-induced activation of mitogen-activated protein kinase (MAPK)-mediated cellular IL-8 production. Similarly, the ESF protected against C. acnes-stimulated mouse ear swelling, as measured by ear thickness (20%) and biopsy weight (23%). Twenty-four compounds in the ESF were identified using gas chromatograph-mass spectrum (GC/MS) analysis. Using co-cultures of C. acnes and THP-1 cells, ß-ionone, a compound of the ESF, reduced the production of IL-1ß and IL-8 up to 40% and 18%, respectively. ß-ionone also reduced epidermal microabscess, neutrophilic infiltration and IL-1ß expression in mouse ear. We also found evidence of the presence of anti-inflammatory substances in an unfractionated phenolic extract of WBM leaf, and demonstrated that the ESF is a potential anti-inflammatory agent for modulating in vitro and in vivo C. acnes-induced inflammatory responses.


Asunto(s)
Antiinflamatorios/química , Momordica charantia/química , Extractos Vegetales/química , Propionibacteriaceae/patogenicidad , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Edema/microbiología , Edema/patología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Masculino , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Momordica charantia/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/microbiología , Extractos Vegetales/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo
5.
J Nutr ; 142(7): 1197-204, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22623391

RESUMEN

The aim of this study was to investigate the antiadiposity effect of bitter melon seed oil (BMSO), which is rich in the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid. In Expt. 1, C57BL/6J mice were fed a butter-based, high-fat diet [HB; 29% butter + 1% soybean oil (SBO)] for 10 wk to induce obesity. They then continued to receive that diet or were switched to an SBO-based, high-fat diet alone (HS; 30% SBO) or containing bitter melon seed oil (BMSO) (HBM; 15% SBO + 15% BMSO) for 5 wk. The body fat percentage was significantly lower in mice fed the HBM diet (21%), but not the HS diet, compared with mice fed the HB diet. In Expt. 2, mice were fed an SBO-based, high-fat diet containing 0 (HS), 5 (LBM), 10 (MBM), or 15% (HBM) BMSO for 10 wk. In the LBM, MBM, and HBM groups, the body fat percentage was significantly lower by 32, 35, and 65%, respectively, compared with the HS control. The reduction in the HBM group was significantly greater than that in the LBM or MBM group. BMSO administration increased phosphorylation of acetyl-CoA carboxylase, cAMP-activated protein kinase (PKA), and signal transducer and activator of transcription 3 in the white adipose tissue (WAT), suggesting that PKA and leptin signaling might be involved in the BMSO-mediated reduction in lipogenesis and increase in thermogenesis and lipolysis. However, compared with the HS control, the HBM group had a significantly higher TNFα concentration in the WAT accompanied by TUNEL-positive nuclei. We conclude that BMSO is effective in attenuating body fat accumulation through mechanisms associated with PKA activation and programmed cell death in the WAT, but safety concerns need to be carefully addressed.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Momordica charantia/química , Obesidad/tratamiento farmacológico , Aceites de Plantas/farmacología , Proteínas Quinasas/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , AMP Cíclico/metabolismo , Dieta/efectos adversos , Activación Enzimática/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Leptina/metabolismo , Ácidos Linolénicos/farmacología , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Fosforilación , Fitoterapia , Aceites de Plantas/química , Semillas/química , Transducción de Señal , Termogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-23091557

RESUMEN

Plants are an invaluable source of potential new anti-cancer drugs. Momordica charantia is one of these plants with both edible and medical value and reported to exhibit anticancer activity. To explore the potential effectiveness of Momordica charantia, methanol extract of Momordica charantia (MCME) was used to evaluate the cytotoxic activity on four human cancer cell lines, Hone-1 nasopharyngeal carcinoma cells, AGS gastric adenocarcinoma cells, HCT-116 colorectal carcinoma cells, and CL1-0 lung adenocarcinoma cells, in this study. MCME showed cytotoxic activity towards all cancer cells tested, with the approximate IC(50) ranging from 0.25 to 0.35 mg/mL at 24 h. MCME induced cell death was found to be time-dependent in these cells. Apoptosis was demonstrated by DAPI staining and DNA fragmentation analysis using agarose gel electrophoresis. MCME activated caspase-3 and enhanced the cleavage of downstream DFF45 and PARP, subsequently leading to DNA fragmentation and nuclear condensation. The apoptogenic protein, Bax, was increased, whereas Bcl-2 was decreased after treating for 24 h in all cancer cells, indicating the involvement of mitochondrial pathway in MCME-induced cell death. These findings indicate that MCME has cytotoxic effects on human cancer cells and exhibits promising anti-cancer activity by triggering apoptosis through the regulation of caspases and mitochondria.

7.
Artículo en Inglés | MEDLINE | ID: mdl-23320038

RESUMEN

Momordica charantia has been found to exhibit anticancer activity, in addition to its well-known therapeutic functions. We have demonstrated that the leaf extract of Momordica charantia (MCME) induces apoptosis in several human cancer cells through caspase- and mitochondria-dependent pathways. In this study, a different susceptibility to MCME was found in human lung adenocarcinoma CL1 cells with different metastatic ability, leading to the significant difference of cell viability and invasiveness between MCME-treated CL1-0 and CL1-5 cells. MCME was found to upregulate the expression of Wnt-2 and affect the migratory and invasive ability of CL1 cells through suppressed MMP-2 and MMP-9 enzymatic activities. We proposed that MCME mediates inhibition against migration of CL1 cells by reducing the expression and activation of Src and FAK to decrease the expression of downstream Akt, ß-catenin, and MMPs.

8.
Molecules ; 17(8): 9348-60, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22864242

RESUMEN

Corchorus olitorius L.,is a culinary and medicinal herb, widely used as a vegetable in several countries in Asia. Many studies have shown that C. olitorius contains several antioxidants and exhibits anti-inflammatory and anti-proliferative activities in various in vitro and in vivo settings. Recently, C. olitorius has been approved for its antitumor activity; however, the underlying molecular mechanisms remain unclear. The goal of this study was to investigate the effects of ethanol extract of C. olitorius (ECO) on the growth of human hepatocellular carcinoma (HepG2) cells and gain some insights into the underlying mechanisms of its action. We found that HepG2 cells, treated with ECO for 24 h at a concentration higher than 12.5 µg/mL, displayed a strong reduction in cell viability, whereas normal FL83B hepatocytes were not affected. DNA fragmentation and nuclear condensation were evidenced by the increased subG1 population of ECO-treated HepG2 cells. ECO triggered the activation of procaspases-3 and -9 and caused the cleavage of downstream substrate, poly ADP-ribose polymerase (PARP), followed by down-regulation of the inhibitor of caspase-activated DNase (ICAD) signaling. Moreover, the increased release of cytochrome c from mitochondria with decreased membrane potential demonstrated the apoptosis induced through the caspases cascade. Our findings indicated that ECO might be effective against hepatocellular carcinoma through induction of apoptosis via mitochondria-dependent pathway.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Corchorus/química , Mitocondrias/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antineoplásicos/aislamiento & purificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN , Ensayos de Selección de Medicamentos Antitumorales , Etanol/química , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Extractos Vegetales/aislamiento & purificación , Solventes/química
9.
Foods ; 11(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35267362

RESUMEN

Cucurbitane-type triterpenoids are a major class of bioactive compounds present in bitter melon. In the present study, six different cultivars of bitter melon were extracted by using microwave- or ultrasound-assisted techniques to identify the prominent method that can extract the majority of cucurbitane-type triterpenoids. A UHPLC-MS/MS (ultra-high-performance liquid chromatography tandem mass spectrometry) system was used for the identification and quantification of ten cucurbitane-type triterpenoids. The results suggest that the use of microwave-assisted extraction on cultivars 4 and 5 produced higher amounts of the selected cucurbitane-type triterpenoids. The interpretation of principal component analysis also identified that cultivar 4 is significantly different from the others in which the compounds 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al and momordicine I were found in higher quantities. Upon further evaluation, it was also identified that these two triterpenoids can act as antiproliferative agents due to their effects on SAS human oral cancer cell lines.

10.
Nutrients ; 10(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513908

RESUMEN

Recently, the use of natural food supplements to reduce the side effects of chemical compounds used for the treatment of various diseases has become popular. Lithium chloride (LiCl) has some protective effects in neurological diseases, including Alzheimer's disease (AD). However, its toxic effects on various systems and some relevant interactions with other drugs limit its broader use in clinical practice. In this study, we investigated the in vitro and in vivo pharmacological functions of LiCl combined with Momordica charantia (MC) in the treatment of AD. The in vitro results show that the order of the neuroprotective effect is MC5, MC3, MC2, and MC5523 under hyperglycemia or tau hyperphosphorylation. Therefore, MC5523 (80 mg/kg; oral gavage) and/or LiCl (141.3 mg/kg; intraperitoneal injection) were applied to ovariectomized (OVX) 3×Tg-AD female and C57BL/6J (B6) male mice that received intracerebroventricular injections of streptozotocin (icv-STZ, 3 mg/kg) for 28 days. We found that the combined treatment not only increased the survival rate by reducing hepatotoxicity but also increased neuroprotection associated with anti-gliosis in the icv-STZ OVX 3×Tg-AD mice. Furthermore, the cotreatment with MC5523 and LiCl prevented memory deficits associated with reduced neuronal loss, gliosis, oligomeric Aß level, and tau hyperphosphorylation and increased the expression levels of synaptic-related protein and pS9-GSK3ß (inactive form) in the icv-STZ B6 mice. Therefore, MC5523 combined with LiCl could be a potential strategy for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Cloruro de Litio/efectos adversos , Cloruro de Litio/uso terapéutico , Momordica charantia , Fármacos Neuroprotectores/farmacología , Animales , Antimaníacos/uso terapéutico , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Distribución Aleatoria
11.
J Nutr Biochem ; 33: 28-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27260465

RESUMEN

α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100µmol/L) or in combination with α-ESA (LN+α-ESA; 75+25µmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways.


Asunto(s)
Suplementos Dietéticos , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Hipolipemiantes/uso terapéutico , Ácidos Linoleicos Conjugados/uso terapéutico , Ácidos Linolénicos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Activación Enzimática , Hepatocitos/enzimología , Hipertrigliceridemia/sangre , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/prevención & control , Hipolipemiantes/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolénicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Momordica charantia/química , NAD/química , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ratas , Semillas/química , Transducción de Señal , Sirtuina 1/química , Sirtuina 1/metabolismo , Células Tumorales Cultivadas
12.
Nutrients ; 8(12)2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27973445

RESUMEN

We previously reported that bitter melon seed oil (BMSO) was an effective anti-steatosis and antiobesity agent. Since the major fatty acid α-eleostearic acid (α-ESA) in BMSO is a peroxisome proliferator-activated receptor α (PPARα) activator, the objective was to investigate the role of PPARα in BMSO-modulated lipid disorders and α-ESA metabolism. C57BL/6J wild (WD) and PPARα knockout (KO) mice were fed a high-fat diet containing BMSO (15% soybean oil + 15% BMSO, HB) or not (30% soybean oil, HS) for 5 weeks. The HB diet significantly reduced hepatic triglyceride concentrations and increased acyl-CoA oxidase activity in WD, but not in KO mice. However, regardless of genotype, body fat percentage was lowered along with upregulated protein levels of uncoupling protein 1 (UCP1) and tyrosine hydroxylase, as well as signaling pathway of cAMP-dependent protein kinase and AMP-activated protein kinase in the white adipose tissue of HB-treated groups compared to HS cohorts. In WD-HB and KO-HB groups, white adipose tissue had autophagy, apoptosis, inflammation, and browning characteristics. Without PPARα, in vivo reduction of α-ESA into rumenic acid was slightly but significantly lowered, along with remarkable reduction of hepatic retinol saturase (RetSat) expression. We concluded that BMSO-mediated anti-steatosis depended on PPARα, whereas the anti-adiposity effect was PPARα-independent. In addition, PPARα-dependent enzymes may participate in α-ESA conversion, but only have a minor role.


Asunto(s)
Dislipidemias/tratamiento farmacológico , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolénicos/metabolismo , Momordica charantia/química , PPAR alfa/fisiología , Fitoterapia , Aceites de Plantas/química , Acil-CoA Oxidasa/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adiposidad/efectos de los fármacos , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Aceites de Plantas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Triglicéridos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Food Funct ; 6(8): 2550-60, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26098998

RESUMEN

Propionibacterium acnes is a key pathogen involved in acne inflammation. Wild bitter melon (WBM, Momordica charantia L. var. abbreviate Seringe) is consumed as both a vegetable and as folk medicine in Taiwan. We examined the inhibitory activity of the total phenolic extract (TPE) of WBM leaf on P. acnes-induced inflammatory responses in vivo and in vitro. Our data showed that TPE significantly attenuated P. acnes-induced ear swelling in mice along with microabscess. Flow cytometry analysis revealed that TPE treatment significantly decreased the migration of neutrophils and interleukin (IL)-1ß(+) populations in vivo. In P. acnes-stimulated human monocytic THP-1 cells, TPE suppressed the mRNA levels and production of IL-8, IL-1ß, and tumor necrosis factor (TNF)-αin vitro. In addition, TPE suppressed P. acnes-induced matrix metalloproteinase-9 levels. TPE blocked nuclear factor-κB (NF-κB) activation and inactivated mitogen-activated protein kinases (MAPK); these actions may partially account for its inhibitory effect on cytokine production. The quantitative HPLC analysis revealed gallic, chlorogenic, caffeic, ferulic, and cinnamic acids, myricetin, quercetin, luteolin, apigenin, and thymol in TPE. All these phenolics significantly suppressed P. acnes-induced IL-8 production in vitro. Our results suggest that WBM leaf extract effectively inhibits P. acnes-induced inflammatory responses and may be useful to relieve the inflammation of acne.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Acné Vulgar/inmunología , Momordica charantia/química , Extractos Vegetales/administración & dosificación , Propionibacterium acnes/fisiología , Acné Vulgar/genética , Acné Vulgar/microbiología , Animales , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Ratones , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Taiwán , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
14.
Food Funct ; 5(5): 1027-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664243

RESUMEN

Bitter gourd (Momordica charantia L.) is a common vegetable grown widely in Asia that is used as a traditional medicine. The objective of this study was to investigate whether wild bitter gourd possessed protective effects against chronic alcohol-induced liver injury in mice. C57BL/6 mice were fed an alcohol-containing liquid diet for 4 weeks to induce alcoholic fatty liver. Meanwhile, mice were treated with ethanol extracts from four different wild bitter gourd cultivars: Hualien No. 1', Hualien No. 2', Hualien No. 3' and Hualien No. 4'. The results indicated that the daily administration of 500 mg kg body weight(-1) of a Hualien No. 3' extract (H3E) or a Hualien No. 4' extract (H4E) markedly reduced the steatotic alternation of liver histopathology. In addition, the activation of serum aminotransferases (AST and ALT) and the accumulation of hepatic TG content caused by alcohol were ameliorated. The hepatoprotective effects of H3E and H4E involved the enhancement of the antioxidant defence system (GSH, GPx, GRd, CAT and SOD), inhibition of lipid peroxidation (MDA) and reduction of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in the liver. Moreover, H3E and H4E supplementation suppressed the alcohol-induced elevation of CYP2E1, SREBP-1, FAS and ACC protein expression. These results demonstrated that ethanol extracts of Hualien No. 3' and Hualien No. 4' have beneficial effects against alcoholic fatty liver, in which they attenuate oxidative stress and inflammatory responses.


Asunto(s)
Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/inmunología , Momordica charantia/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Sustancias Protectoras/administración & dosificación , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
Bot Stud ; 55(1): 78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28510957

RESUMEN

BACKGROUND: Several wild bitter melon (WBM; Momordica charantia Linn. var. abbreviata Ser.) cultivars were developed in Taiwan. However, little information is available regarding biological function of WBM leaf. Therefore, the objectives of this study were to investigate the nutrient content, antioxidant, cell protection and anti-melanogenic properties of wild bitter melon leaf. RESULTS: Methanolic leaf extracts were prepared from a variety and two cultivars of WBM. All extracts exerted potent nitric oxide and hydroxyl radical scavenging capacities. Furthermore, all extracts effectively reduce the production of reactive oxygen species and prevent cell death in UVB-irradiated HaCaT keratinocytes. The cell protective effect of leaf extract was also investigated by the prevention of HaCaT cells from sodium nitroprusside or menadione-induced toxicity, and significant cyto-protective activities were observed for all of them. Additionally, all extracts significantly suppressed tyrosinase activity and melanin levels in B16-F10 melanocytes. CONCLUSIONS: WBM leaf extract showed significant antioxidant, cyto-protective and anti-melanogenic activities. These findings suggested that WBM leaves may be beneficial for preventing the photo-oxidative damage and melanogenesis of skin.

16.
Nutrition ; 28(7-8): 803-11, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22465903

RESUMEN

OBJECTIVE: The aim of this study was to investigate the adipogenic effect of cis-9, trans-11, trans-13-conjugated linolenic acid (c9,t11,t13-CLN), a fatty acid naturally present in bitter melon. METHODS: The 3T3-L1 murine preadipocyte cell line was used to test the effect of saponifiables from whole bitter melon and of commercially prepared pure c9,t11,t13-CLN on adipocyte differentiation. The effect of c9,t11,t13-CLN on 3T3-L1 cell viability was also tested at proliferation, mitotic clonal expansion, and terminal differentiation stages. RESULTS: Compared to the free fatty acid control mixture, the proadipogenic effect on 3T3-L1 was less potent using saponifiables obtained from bitter melon. C9,t11,t13-CLN, unlike its non-conjugated counterpart linolenic acid (LN) or other common fatty acids such as oleic acid or linoleic acid, exerted no proadipogenic effect on 3T3-L1. In contrast to LN displaying no cytotoxic effect at a concentration ≤100 µM, c9,t11,t13-CLN caused a dose-dependent reduction in the viability of pre- and postconfluent preadipocytes associated with apoptosis. Sustained ERK/MAPK activation, accompanied by increased peroxisome proliferator-activated receptor γ phosphorylation, was seen in c9,t11,t13-CLN-treated cells at initiation of differentiation. CONCLUSION: C9,t11,t13-CLN is less adipogenic for 3T3-L1 cells than LN and this is partly due to its apoptotic effect on proliferating preadipocytes and to the sustained ERK phosphorylation seen during mitotic clonal expansion.


Asunto(s)
Adipocitos/fisiología , Fármacos Antiobesidad/metabolismo , Apoptosis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Linolénicos/metabolismo , Células 3T3-L1 , Adipocitos/enzimología , Adipogénesis , Animales , Proliferación Celular , Supervivencia Celular , Frutas/química , Regulación de la Expresión Génica , Ratones , Momordica charantia/química , Concentración Osmolar , PPAR gamma/genética , PPAR gamma/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Triglicéridos/biosíntesis
17.
Br J Nutr ; 99(2): 230-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17651527

RESUMEN

Bitter melon (Momordica charantia; BM) has been shown to ameliorate diet-induced obesity and insulin resistance. To examine the effect of BM supplementation on cell size and lipid metabolism in adipose tissues, three groups of rats were respectively fed a high-fat diet supplemented without (HF group) or with 5 % lyophilised BM powder (HFB group), or with 0.01 % thiazolidinedione (TZD) (HFT group). A group of rats fed a low-fat diet was also included as a normal control. Hyperinsulinaemia and glucose intolerance were observed in the HF group but not in HFT and HFB groups. Although the number of large adipocytes (>180 microm) of both the HFB and HFT groups was significantly lower than that of the HF group, the adipose tissue mass, TAG content and glycerol-3-phosphate dehydrogenase activity of the HFB group were significantly lower than those of the HFT group, implying that BM might reduce lipogenesis in adipose tissue. Experiment 2 was then conducted to examine the expression of lipogenic genes in adipose tissues of rats fed low-fat, HF or HFB diets. The HFB group showed significantly lower mRNA levels of fatty acid synthase, acetyl-CoA carboxylase-1, lipoprotein lipase and adipocyte fatty acid-binding protein than the HF group (P < 0.05). These results indicate BM can reduce insulin resistance as effective as the anti-diabetic drug TZD. Furthermore, BM can suppress the visceral fat accumulation and inhibit adipocyte hypertrophy, which may be associated with markedly down regulated expressions of lipogenic genes in the adipose.


Asunto(s)
Adipocitos/patología , Tejido Adiposo/metabolismo , Fármacos Antiobesidad/farmacología , Suplementos Dietéticos , Momordica charantia , Obesidad/metabolismo , Fitoterapia/métodos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/patología , Animales , Tamaño de la Célula/efectos de los fármacos , Dieta , Grasas de la Dieta/administración & dosificación , Regulación hacia Abajo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Hipertrofia/prevención & control , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Masculino , Obesidad/patología , Obesidad/fisiopatología , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA