Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 175, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38276993

RESUMEN

Honeybee (Apis mellifera) is an important agricultural pollinator and a model for sociality. In this study, a deep knowledge on yeast community characterizing the honeybees' environmental was carried out. For this, a total of 93 samples were collected: flowers as food sources, bee gut mycobiota, and bee products (bee pollen, bee bread, propolis), and processed using culture-dependent techniques and a molecular approach for identification. The occurrence of yeast populations was quantitatively similar among flowers, bee gut mycobiota, and bee products. Overall, 27 genera and 51 species were identified. Basidiomycetes genera were predominant in the flowers while the yeast genera detected in all environments were Aureobasidium, Filobasidium, Meyerozyma, and Metschnikowia. Fermenting species belonging to the genera Debaryomyces, Saccharomyces, Starmerella, Pichia, and Lachancea occurred mainly in the gut, while most of the identified species of bee products were not found in the gut mycobiota. Five yeast species, Meyerozyma guilliermondii, Debaryomyces hansenii, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Starmerella roseus, were present in both summer and winter, thus indicating them as stable components of bee mycobiota. These findings can help understand the yeast community as a component of the bee gut microbiota and its relationship with related environments, since mycobiota characterization was still less unexplored. In addition, the gut microbiota, affecting the nutrition, endocrine signaling, immune function, and pathogen resistance of honeybees, represents a useful tool for its health evaluation and could be a possible source of functional yeasts. KEY POINTS: • The stable yeast populations are represented by M. guilliermondii, D. hansenii, H. uvarum, H. guilliermondii, and S. roseus. • A. pullulans was the most abondance yeast detective in the flowers and honeybee guts. • Aureobasidium, Meyerozyma, Pichia, and Hanseniaspora are the main genera resident in gut tract.


Asunto(s)
Ascomicetos , Microbioma Gastrointestinal , Abejas , Animales , Levaduras/genética , Pichia , Flores
2.
World J Microbiol Biotechnol ; 40(5): 147, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538981

RESUMEN

Probiotic microorganisms are used to improve the health and wellness of people and the research on this topic is of current relevance and interest. Fifty-five yeasts, coming from honeybee's ecosystem and belonging to Candida, Debaryomyces, Hanseniaspora, Lachancea, Metschnikowia, Meyerozyma, Starmerella and Zygosacchromyces genera and related different species, were evaluated for the probiotic traits. The resistance to gastrointestinal conditions, auto-aggregation, cell surface hydrophobicity or biofilm formation abilities as well as antimicrobial activity against common human pathogenic bacteria were evaluated. The safety analysis of strains was also carried out to exclude any possible negative effect on the consumer's health. The influence of proteinase treatment of living yeasts and their adhesion to Caco-2 cells were also evaluated. The greatest selection occurred in the first step of survival at the acidic pH and in the presence of bile salts, where more than 50% of the strains were unable to survive. Equally discriminating was the protease test which allowed the survival of only 27 strains belonging to the species Hanseniaspora guilliermondii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Metschnikowia ziziphicola, Meyerozyma caribbica, Meyerozyma guilliermondii, Pichia kluyveri, Pichia kudriavzevii and Pichia terricola. An integrated analysis of the results obtained allowed the detection of seven yeast strains with probiotic aptitudes, all belonging to the Meyerozyma genus, of which three belonging to M. guillermondii and four belonging to M. caribbica species.


Asunto(s)
Ecosistema , Probióticos , Abejas , Animales , Humanos , Células CACO-2 , Levaduras/metabolismo , Candida
3.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674823

RESUMEN

Three killer toxins that were previously investigated, one excreted by Kluyveromyces wickerhamii and two by different strains of Wickerhamomyces anomalus, were produced at the pilot scale, lyophilized and characterized, and the formulates were assessed for their zymocidial effect against Brettanomyces bruxellensis spoilage yeast. A comparative analysis allowed the evaluation of the minimum inhibitory concentration (MIC) against a sensitive strain. Fungicidal and fungistatic concentrations were used to evaluate the cytocidal effect using a cytofluorimetric approach that confirmed the lethal effect of all lyophilized formulates against B. bruxellensis spoilage yeasts. Moreover, the potential killer toxins' cytotoxicity against human intestinal cells (Caco-2) were evaluated to exclude any possible negative effect on the consumers. Finally, the effective lethal effect of all three lyophilized killer toxins toward B. bruxellensis sensitive strain were tested. The results indicated that all of them acted without dangerous effects on the human epithelial cells, opening the way for their possible commercial application. In particular, D15 showed the lowest MIC and the highest activity, was evaluated also in wine, revealing a strong reduction of Brettamonyces yeast growth and, at the same time, a control of ethyl phenols production.


Asunto(s)
Brettanomyces , Toxinas Biológicas , Vino , Humanos , Células CACO-2 , Levaduras , Toxinas Biológicas/farmacología , Microbiología de Alimentos
4.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299371

RESUMEN

Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.


Asunto(s)
Fermentación/fisiología , Vino/microbiología , Levaduras/metabolismo , Etanol/metabolismo , Humanos , Microbiota/fisiología , Nutrientes/metabolismo , Saccharomyces/metabolismo
5.
Crit Rev Biotechnol ; 39(5): 603-617, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31023102

RESUMEN

Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.


Asunto(s)
Antiinfecciosos/toxicidad , Citotoxinas/toxicidad , Factores Asesinos de Levadura/toxicidad , Animales , Citotoxinas/genética , Fenómenos Ecológicos y Ambientales , Humanos , Factores Asesinos de Levadura/genética , Péptidos/toxicidad , Proteínas Recombinantes/toxicidad
6.
Food Microbiol ; 84: 103247, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31421773

RESUMEN

Over the last decades there has been an increase in ethanol concentration in wine. High ethanol concentration may impact negatively wine flavor and can be associated with harmful effects on human health. In this study, we investigated a microbiological approach to reduce wine ethanol concentration, using three non-Saccharomyces yeast strains (Metschnikowia pulcherrima, Torulaspora delbrueckii and Zygosaccharomyces bailii) in sequential fermentations with S. cerevisiae under different aeration conditions. At the same time, we evaluated the volatile profile of the resulting reduced alcohol Chardonnay wines. Results showed that the non-Saccharomyces yeasts tested were able to reduce wine ethanol concentration when oxygen was provided. Compared to S. cerevisiae wines, ethanol reduction was 1.6% v/v, 0.9% v/v and 1.0% v/v for M. pulcherrima, T. delbrueckii and Z. bailii sequential fermentations, respectively. Under the conditions evaluated here, aeration did not affect acetic acid production for any of the non-Saccharomyces strains tested. Although aeration affected wine volatile profiles, this was depended on yeast strain. Thus, wines produced with M. pulcherrima under aeration of 0.05 volume of air per volume of culture per minute (VVM) showed excessive ethyl acetate content, while Z. bailli wines produced with 0.05 VVM aeration had increased concentrations of higher alcohols and volatile acids. Increased concentrations of these compounds over their sensory thresholds, are likely to impact negatively on wine sensory profile. Contrarily, all three non-Saccharomyces strains under 0.025 VVM aeration conditions produced wines with reduced ethanol concentration and acceptable chemical volatile profiles.


Asunto(s)
Fermentación , Oxígeno/metabolismo , Vino/análisis , Levaduras/metabolismo , Etanol/análisis
7.
Food Microbiol ; 74: 100-106, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29706323

RESUMEN

In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines.


Asunto(s)
Fermentación , Aromatizantes/metabolismo , Torulaspora/metabolismo , Vino/análisis , Técnicas de Cocultivo , Ésteres/análisis , Ésteres/metabolismo , Etanol/análisis , Concentración de Iones de Hidrógeno , Odorantes , Saccharomyces cerevisiae/metabolismo , Vitis , Compuestos Orgánicos Volátiles/análisis , Vino/microbiología
8.
Appl Microbiol Biotechnol ; 101(7): 2931-2942, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28032192

RESUMEN

The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with ß-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has ß-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.


Asunto(s)
Biotecnología/métodos , Citotoxinas/genética , Factores Asesinos de Levadura/genética , Kluyveromyces/metabolismo , Pichia/genética , Pared Celular/efectos de los fármacos , Citotoxinas/metabolismo , Citotoxinas/farmacología , Factores Asesinos de Levadura/metabolismo , Factores Asesinos de Levadura/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vino/microbiología , Levaduras/efectos de los fármacos , Zygosaccharomyces/efectos de los fármacos
9.
Food Microbiol ; 56: 45-51, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26919817

RESUMEN

Nowadays, consumers require fermented alcoholic beverages with particular and enhanced flavour profiles while avoiding the health concerns due to high ethanol content. Here, the use of Torulaspora delbrueckii was evaluated for beer production, in both pure and in mixed cultures with a Saccharomyces cerevisiae starter strain (US-05). The yeast interactions were also evaluated. In mixed fermentations with S. cerevisiae, the main analytical characters from T. delbrueckii were comparable with those of the S. cerevisiae starter strain, but the beers were characterized by a distinctive overall analytical and aromatic profile. Indeed, there were interactions between S. cerevisiae and T. delbrueckii, with enhanced ethyl hexanoate (0.048 mg l(-1)) and ethyl octaonate (0.014 mg l(-1)) levels at the 1:20 and 1:10 inoculation ratios, respectively; while phenyl ethyl acetate increased in all mix combinations. The presence of T. delbrueckii resulted in reduced ß-phenyl ethanol and isoamyl acetate levels, which are responsible for floral and fruity aromas, respectively. Beer produced with T. delbrueckii pure cultures had a low alcohol content (2.66%; v/v), while also showing a particularly analytical and aromatic profile.


Asunto(s)
Cerveza/análisis , Etanol/análisis , Fermentación , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Acetatos/metabolismo , Técnicas de Cocultivo , Saccharomyces cerevisiae/crecimiento & desarrollo , Torulaspora/crecimiento & desarrollo , Vino/análisis
10.
Arch Microbiol ; 197(6): 773-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25868793

RESUMEN

In Saccharomyces cerevisiae, a typical apoptotic phenotype is induced by some stress factors such as sugars, acetic acid, hydrogen peroxide, aspirin and age. Nevertheless, no data have been reported for apoptosis induced by puromycin, a damaging agent known to induce apoptosis in mammalian cells. We treated S. cerevisiae with puromycin to induce apoptosis and evaluated the percentage of dead cells by using Hoechst 33342 staining, transmission electron microscopy (TEM) and Annexin V flow cytometry (FC) analysis. Hoechst 33342 fluorescence images were processed to acquire parameters to use for multiparameter analysis [and perform a principal component analysis, (PCA)]. Cell viability was evaluated by Rhodamine 123 (Rh 123) and Acridine Orange microscope fluorescence staining. The results show puromycin-induced apoptosis in S. cerevisiae, and the PCA analysis indicated that the increasing percentage of apoptotic cells delineated a well-defined graph profile. The results were supported by TEM and FC. This study gives new insights into yeast apoptosis using puromycin as inducer agent, and PCA analysis may complement molecular analysis facilitating further studies to its detection.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Citometría de Flujo , Microscopía Electrónica de Transmisión , Análisis de Componente Principal , Saccharomyces cerevisiae/fisiología
11.
Biotechnol Lett ; 37(11): 2213-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26198848

RESUMEN

OBJECTIVES: To achieve an optimized co-culture ratio of Scheffersomyces stipitis and Saccharomyces cerevisiae for the production of second generation bioethanol under a cell-recycle batch process. RESULTS: Three Sacc. cerevisiae strains were evaluated in co-culture with Sch. stipitis CBS 5773 at different ratios using synthetic medium containing glucose and xylose. Bioreactor trials indicated that the optimal condition for ethanol production using Sacc. cerevisiae EC1118 and Sch. stipitis co-culture was 1 % of O2 concentration. To increase ethanol production with Sacc. cerevisiae/Sch. stipitis co-culture a cell-recycle batch process was evaluated. Using this process, the maximum ethanol production (9.73 g l(-1)) and ethanol yield (0.42 g g(-1)) were achieved exhibiting a tenfold increase in ethanol productivity in comparison with batch process (2.1 g l(-1) h(-1)). In these conditions a stabilization of the cells ratio Sacc. cerevisiae/Sch. stipitis (1:5) at steady state condition was obtained. CONCLUSION: Batch cells recycling fermentation is an effective process to use Sch. stipitis/Sacc. cerevisiae co-culture for second generation ethanol production.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Biocombustibles , Biotecnología/métodos , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentación , Oxígeno
12.
FEMS Yeast Res ; 14(3): 464-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24289664

RESUMEN

Tetrapisispora phaffii produces a killer toxin known as Kpkt that has extensive anti-Hanseniaspora/Kloeckera activity under winemaking conditions. Kpkt has a ß-glucanase activity and induces ultrastructural modifications in the cell wall of sensitive strains, with a higher specific cytocidal activity and a selective action towards target yeast cells. In this study, a two-step PCR-based approach was used to isolate the gene coding ß-glucanase of T. phaffii. Initially, a fragment of the open reading frame was isolated by degenerate PCR, with primers designed on the NH2 -terminal sequence of the protein and on conserved motifs of Bgl2p of Saccharomyces cerevisiae and Candida albicans. Subsequently, the entire sequence of the gene was obtained by inverse PCR. blast analyses of TpBGL2 highlight high identity with homologous genes in other yeast species, in which TpBGL2p shows no killer activity. However, gene disruption resulted in complete loss of the glucanase activity and the killer phenotype, thus confirming that TpBgl2p has a killer activity.


Asunto(s)
Antibiosis , Glicósido Hidrolasas/metabolismo , Factores Asesinos de Levadura/metabolismo , Saccharomycetales/fisiología , Vino/microbiología , Técnicas de Inactivación de Genes , Glicósido Hidrolasas/genética , Factores Asesinos de Levadura/genética , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo
13.
Microorganisms ; 12(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065262

RESUMEN

The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of "winery-effect". The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of "winery effect".

14.
Foods ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397482

RESUMEN

Non-alcoholic beer (NAB) and low-alcoholic beer (LAB) are taking over the market with growing sales. Sustainable recycling and valorization of exhausted brewer's spent grain (BSG) coming from craft beer is a relevant issue in the brewing process. In this work, recycled BSG and BSG + GJ (supplemented with 10% grape juice) were used as a wort substrate to inoculate Lachancea thermotolerans, Wickeramhomyces anomalus, Torulaspora delbruecki and Pichia kluyveri non-conventional yeasts to produce NABLAB craft beer. Results showed that wort composed of only recycled BSG produced appreciated NAB beers (ethanol concentration from 0.12% to 0.54% v/v), while the addition of 10% grape juice produced LAB beers (ethanol concentration from 0.82 to 1.66% v/v). As expected, volatile compound production was highest with the addition of grape juice. L. thermotolerans showed lactic acid production, characterizing both worts with the production of ethyl butyrate and isoamyl acetate. T. delbrueckii exhibited relevant amounts of hexanol, phenyl ethyl acetate and ß-phenyl ethanol (BSG + GJ). W. anomalus and P. kluyveri showed consistent volatile production, but only in BSG + GJ where fermentation activity was exhibited. The overall results indicated that reused BSGs, non-conventional yeasts and grape juice are suitable bioprocesses for specialty NABLAB beer.

15.
Int J Food Microbiol ; 424: 110857, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39141973

RESUMEN

Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.


Asunto(s)
Antioxidantes , Fermentación , Alimentos Fermentados , Probióticos , Levaduras , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Bebidas/microbiología , Alimentos Funcionales , Microbiología de Alimentos , Humanos , Fenoles/metabolismo , Fenoles/análisis
16.
Food Microbiol ; 33(2): 271-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23200661

RESUMEN

In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine. In this specific pairing of yeast strains in mixed fermentations (S. cerevisiae EC1118 and L. thermotolerans 101), this non-Saccharomyces yeast showed a high level of competitiveness. Nevertheless the S. cerevisiae strain dominated the fermentation over the spontaneous S. cerevisiae strains also under the industrial fermentation conditions. The different condition tested (modalities of inoculum, temperature of fermentation, different grape juice) influenced the specific interactions and the fermentation behaviour of the co-culture of S. cerevisiae and L. thermotolerans. However, some metabolic behaviours such as pH reduction and enhancement of 2-phenylethanol and glycerol, were shown here under all of the conditions tested. The specific chemical profiles of these wines were confirmed by the sensory analysis test, which expressed these results at the tasting level as significant increases in the spicy notes and in terms of total acidity increases.


Asunto(s)
Ácidos/metabolismo , Técnicas de Cocultivo/métodos , Microbiología Industrial/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vino/microbiología , Ácidos/análisis , Etanol/metabolismo , Fermentación , Humanos , Gusto , Vitis/metabolismo , Vitis/microbiología , Vino/análisis
17.
World J Microbiol Biotechnol ; 29(6): 1009-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23355137

RESUMEN

In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in ß-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.


Asunto(s)
Carotenoides/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Rhodotorula/crecimiento & desarrollo , Rhodotorula/metabolismo , Biomasa , Medios de Cultivo/química , Mutagénesis , Peptonas/metabolismo , Rhodotorula/genética , Rhodotorula/efectos de la radiación , Rayos Ultravioleta
18.
Microorganisms ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985126

RESUMEN

In recent years there has been a growing interest in the use of natural antimicrobial compounds to limit or avoid the use of chemical antimicrobials. Natural antimicrobial compounds can come from plants (essential oils) or from microorganisms (bacteriocins, mycocines, and active peptides). Despite a wide range of possible applications, their exploitation at the industrial level is still limited and needs to be investigated. The actual and possible applications of natural antimicrobial compounds in agri-food are a growing research field. In addition to the use of antimicrobial compounds, microorganisms themselves can be used in the control of spoilage microorganisms along the entire production chain of the agri-food industry. Likewise, the papers collected in this Special Issue indicate the fast development of novelties in this research field.

19.
Heliyon ; 9(10): e20979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916127

RESUMEN

Currently, an increasing number of intolerant and vegan consumers are driving the market towards plant-based milk alternatives. Here, selected probiotic yeasts, belonging to the Candida zeylanoides, Kluyveromyces lactis and Debaryomyces hansenii species, previously characterized for their aptitude to ferment animal milk, were tested in soy milk. Trials at different fermentation times with the developed yeast consortium (Yc) coinoculated with a lactic bacterium commercial strain were carried out. Yc showed good fermentation performance, conferring distinctive analytical and aromatic properties to the resulted soy fermented beverage, a product similar to an industrial kefir. Analytical determinations did not show significant variations between the end of fermentation and cold storage (4 weeks at 4 °C), indicating full stability. Phenol amounts and antioxidant activity were significantly increased in soy fermented beverage fermented by Yc. All yeasts remained viable until the end of storage with a final concentration of approximately 8 Log CFU/ml, a value suitable for a probiotic commercial claim. Overall, the results suggest that Yc is a promising multistarter candidate for functional soy products.

20.
Microorganisms ; 11(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37374952

RESUMEN

Fermented food matrices, including beverages, can be defined as the result of the activity of complex microbial ecosystems where different microorganisms interact according to different biotic and abiotic factors. Certainly, in industrial production, the technological processes aim to control the fermentation to place safe foods on the market. Therefore, if food safety is the essential prerogative, consumers are increasingly oriented towards a healthy and conscious diet driving the production and consequently the applied research towards natural processes. In this regard, the aim to guarantee the safety, quality and diversity of products should be reached limiting or avoiding the addition of antimicrobials or synthetic additives using the biological approach. In this paper, the recent re-evaluation of non-Saccharomyces yeasts (NSYs) has been reviewed in terms of bio-protectant and biocontrol activity with a particular focus on their antimicrobial power using different application modalities including biopackaging, probiotic features and promoting functional aspects. In this review, the authors underline the contribution of NSYs in the food production chain and their role in the technological and fermentative features for their practical and useful use as a biocontrol agent in food preparations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA