Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Microbiol ; 21(1): 164-181, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289191

RESUMEN

In completely insular microbial communities, evolution of community structure cannot be shaped by the immigration of new members. In addition, when those communities are run in steady state, the influence of environmental factors on their assembly is reduced. Therefore, one would expect similar community structures under steady-state conditions. Yet, in parallel setups, variability does occur. To reveal ecological mechanisms behind this phenomenon, five parallel reactors were studied at the single-cell level for about 100 generations and community structure variations were quantified by ecological measures. Whether community variability can be controlled was tested by implementing soft temperature stressors as potential synchronizers. The low slope of the lognormal rank-order abundance curves indicated a predominance of neutral mechanisms, i.e., where species identity plays no role. Variations in abundance ranks of subcommunities and increase in inter-community pairwise ß-diversity over time support this. Niche differentiation was also observed, as indicated by steeper geometric-like rank-order abundance curves and increased numbers of correlations between abiotic and biotic parameters during initial adaptation and after disturbances. Still, neutral forces dominated community assembly. Our findings suggest that complex microbial communities in insular steady-state environments can be difficult to synchronize and maintained in their original or desired structure, as they are non-equilibrium systems.


Asunto(s)
Microbiota/fisiología , Análisis de la Célula Individual , Ecosistema
2.
Microb Cell Fact ; 18(1): 92, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138218

RESUMEN

BACKGROUND: The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse ß-oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. RESULTS: Caproate and caprylate titres of up to 6.12 g L-1 and 1.83 g L-1, respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (rS > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella, two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. CONCLUSIONS: High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria.


Asunto(s)
Ácidos Acíclicos/metabolismo , Reactores Biológicos , Ácidos Grasos/biosíntesis , Ácido Láctico/metabolismo , Microbiota , Fermentación , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S , Análisis de la Célula Individual
3.
Methods ; 134-135: 67-79, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28842259

RESUMEN

Microbial flow cytometry is an established fast and economic technique for complex ecosystem studies and enables visualization of rapidly changing community structures by measuring characteristics of single microbial cells. Cytometric evaluation routines are available such as flowCyBar which are useful for automatic data processing. Here, a cytometric workflow was established which allows to routinely analyze salivary microbiomes on the example of ten oral healthy subjects. First, saliva was collected within a 3-month period, cytometrically analyzed and the evolution of the microbiomes followed as well as the calculation of their intra- and inter-subject similarity. Second, the respective microbiomes were stressed by exposition to high sugar or acid concentrations and immediate changes were recorded. Third, bactericide solutions were tested on their impact on the microbiomes. In all three set ups huge intra-individual variations in cytometric community structures were found to be largely absent, even under stress, while inter-individual diversity was obvious. The bacterial cell counts of saliva samples were found to vary between 3.0×107 and 6.2×108 cells per sample and subject in undisturbed environments. The application of the two bactericides did not cause noteworthy diversity changes but the loss in cell numbers by about 50% was high after treatment. Illumina® sequencing of whole microbiomes or sorted sub-microbiomes revealed typical phyla such as Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. This approach is useful for fast monitoring of individual salivary microbiomes and automatic calculation of intra- and inter-individual dynamic changes and variability and opens insight into ecological principles leading to their sustainment in their individual environment.


Asunto(s)
Citometría de Flujo/métodos , Microbiota/genética , ARN Ribosómico 16S/genética , Saliva/microbiología , Humanos , Metagenoma/genética , Filogenia , ARN Ribosómico 16S/aislamiento & purificación
4.
New Phytol ; 217(3): 1213-1229, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315638

RESUMEN

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.


Asunto(s)
Genómica , Micorrizas/genética , Plantas/microbiología , Simbiosis/genética , Transcriptoma/genética , Secuencia Conservada/genética , Hongos/clasificación , Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Filogenia , Metabolismo Secundario/genética , Especificidad por Sustrato , Regulación hacia Arriba/genética
5.
Microb Cell Fact ; 16(1): 180, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084543

RESUMEN

BACKGROUND: The widely established production of CH4 from renewable biomass in industrial scale anaerobic reactors may play a major role in the future energy supply. It relies on methanogenic archaea as key organisms which represent the bottleneck in the process. The quantitative analysis of these organisms can help to maximize process performance, uncover disturbances before failure, and may ultimately lead to community-based process control schemes. Existing qPCR and fluorescence microscopy-based methods are very attractive but can be cost-intensive and laborious. RESULTS: In this study we present an autofluorescence-based, flow cytometric method for the fast low-cost quantification of methanogenic archaea in complex microbial communities and crude substrates. The method was applied to a methanogenic enrichment culture (MEC) and digester samples (DS). The methanogenic archaea were quantified using the distinct fluorescence of their cofactor F420 in a range from 3.7 × 108 (± 3.3 × 106) cells mL-1 and 1.8 x 109 (± 1.1 × 108) cells mL-1. We evaluated different fixation methods and tested the sample stability. Stable abundance and fluorescence intensity were recorded up to 26 days during aerobic storage in PBS at 6 °C. The discrimination of the whole microbial community from the ubiquitous particle noise was facilitated by SYBR Green I staining and enabled calculation of relative abundances of methanogenic archaea of up to 9.64 ± 0.23% in the MEC and up to 4.43 ± 0.74% in the DS. The metaprofiling of the mcrA gene reinforced the results. CONCLUSIONS: The presented method allows for fast and reliable quantification of methanogenic archaea in microbial communities under authentic digester conditions and can thus be useful for process monitoring and control in biogas digesters.


Asunto(s)
Archaea/metabolismo , Metano/metabolismo , Archaea/citología , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Benzotiazoles , Biocombustibles , Biomasa , Diaminas , Citometría de Flujo , Microscopía Fluorescente , Compuestos Orgánicos/química , Quinolinas , ARN Ribosómico 16S/química , ARN Ribosómico 16S/aislamiento & purificación , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN
6.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509981

RESUMEN

Tuber brumale and Tuber indicum (Pezizomycetes) are two edible black truffles establishing ectomycorrhizal symbiosis with trees and shrubs. T. brumale is ubiquitous in Europe, and T. indicum is mainly found in China. Here, we present the draft genome sequences of T. brumale and T. indicum.

7.
Nat Protoc ; 15(9): 2788-2812, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32770154

RESUMEN

Flow cytometry has recently established itself as a tool to track short-term dynamics in microbial community assembly and link those dynamics with ecological parameters. However, instrumental configurations of commercial cytometers and variability introduced through differential handling of the cells and instruments frequently cause data set variability at the single-cell level. This is especially pronounced with microorganisms, which are in the lower range of optical resolution. Although alignment beads are valuable to generally minimize instrumental noise and align overall machine settings, an artificial microbial cytometric mock community (mCMC) is mandatory for validating lab workflows and enabling comparison of data between experiments, thus representing a necessary reference standard for the reproducible cytometric characterization of microbial communities, especially in long-term studies. In this study, the mock community consisted of two Gram-positive and two Gram-negative bacterial strains, which can be assembled with respective subsets of cells, including spores, in any selected ratio or concentration. The preparation of the four strains takes a maximum of 5 d, and the stains are storable with either PFA/ethanol fixation at -20 °C or drying at 4 °C for at least 6 months. Starting from this stock, an mCMC can be assembled within 1 h. Fluorescence staining methods are presented and representatively applied with two high-resolution cell sorters and three benchtop flow cytometers. Benchmarked data sets allow the use of bioinformatic evaluation procedures to decode community behavior or convey qualified cell sorting decisions for subsequent high-resolution sequencing or proteomic routines.


Asunto(s)
Bacterias/citología , Técnicas Citológicas/normas , Microbiota , Biología Computacional , Estándares de Referencia , Reproducibilidad de los Resultados
8.
Nat Commun ; 11(1): 5125, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046698

RESUMEN

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.


Asunto(s)
Hongos/genética , Genoma Fúngico , Micorrizas/genética , Simbiosis , Ecosistema , Evolución Molecular , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/fisiología , Micorrizas/clasificación , Micorrizas/fisiología , Filogenia , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología
9.
Front Microbiol ; 9: 3211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671038

RESUMEN

Due to their strong antimicrobial activity, silver nanoparticles (AgNPs) are massively produced, applied, consumed and, as a negative consequence, released into wastewater treatment plants. Most AgNPs are assumed to be bound by sludge, and thus bear potential risk for microbial performance and stability. In this lab-scale study, flow cytometry as a high-throughput method and 16S rRNA gene amplicon Illumina MiSeq sequencing were used to track microbial community structure changes when being exposed to AgNPs. Both methods allowed deeper investigation of the toxic impact of chemicals on microbial communities than classical EC50 determination. In addition, ecological metrics were used to quantify microbial community variations depending on AgNP types (10 and 30 nm) and concentrations. Only low changes in α- and intra-community ß-diversity values were found both in successive negative and positive control batches and batches that were run with AgNPs below the EC50 value. Instead, AgNPs at EC50 concentrations caused upcoming of certain and disappearance of formerly dominant subcommunities. Flavobacteriia were among those that almost disappeared, while phylotypes affiliated with Gammaproteobacteria (3.6-fold) and Bacilli (8.4-fold) increased in cell abundance in comparison to the negative control. Thus, silver amounts at the EC50 value affected community structure suggesting a potential negative impact on functions in wastewater treatment systems.

10.
mSphere ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29359193

RESUMEN

Natural microbial communities affect human life in countless ways, ranging from global biogeochemical cycles to the treatment of wastewater and health via the human microbiome. In order to probe, monitor, and eventually control these communities, fast detection and evaluation methods are required. In order to facilitate rapid community analysis and monitor a community's dynamic behavior with high resolution, we here apply community flow cytometry, which provides single-cell-based high-dimensional data characterizing communities with high acuity over time. To interpret time series data, we draw inspiration from macroecology, in which a rich set of concepts has been developed for describing population dynamics. We focus on the stability paradigm as a promising candidate to interpret such data in an intuitive and actionable way and present a rapid workflow to monitor stability properties of complex microbial ecosystems. Based on single-cell data, we compute the stability properties resistance, resilience, displacement speed, and elasticity. For resilience, we also introduce a method which can be implemented for continuous online community monitoring. The proposed workflow was tested in a long-term continuous reactor experiment employing both an artificial and a complex microbial community, which were exposed to identical short-term disturbances. The computed stability properties uncovered the superior stability of the complex community and demonstrated the global applicability of the protocol to any microbiome. The workflow is able to support high temporal sample densities below bacterial generation times. This may provide new opportunities to unravel unknown ecological paradigms of natural microbial communities, with applications to environmental, biotechnological, and health-related microbiomes. IMPORTANCE Microbial communities drive many processes which affect human well-being directly, as in the human microbiome, or indirectly, as in natural environments or in biotechnological applications. Due to their complexity, their dynamics over time is difficult to monitor, and current sequence-based approaches are limited with respect to the temporal resolution. However, in order to eventually control microbial community dynamics, monitoring schemes of high temporal resolution are required. Flow cytometry provides single-cell-based data in the required temporal resolution, and we here use such data to compute stability properties as easy to interpret univariate indicators of microbial community dynamics. Such monitoring tools will allow for a fast, continuous, and cost-effective screening of stability states of microbiomes. Applicable to various environments, including bioreactors, surface water, and the human body, it will contribute to the development of control schemes to manipulate microbial community structures and performances.

11.
Nat Ecol Evol ; 2(12): 1956-1965, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420746

RESUMEN

Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Rasgos de la Historia de Vida , Micorrizas/genética , Simbiosis , Ascomicetos/fisiología , ADN de Hongos/análisis , Micorrizas/fisiología , Filogenia , Análisis de Secuencia de ADN
12.
Nat Genet ; 47(4): 410-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706625

RESUMEN

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


Asunto(s)
Genoma Fúngico/genética , Micorrizas/genética , Selección Genética , Simbiosis/genética , Virulencia/genética , Secuencia de Bases , Evolución Molecular , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Datos de Secuencia Molecular , Micorrizas/patogenicidad , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA