RESUMEN
BACKGROUND: Although interactions between microorganisms involved in biogas production are largely uncharted, it is commonly accepted that methanogenic Archaea are essential for the process. Methanogens thrive in various environments, but the most extensively studied communities come from biogas plants. In this study, we employed a metagenomic analysis of deeply sequenced methanogenic communities, which allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways. RESULTS: A comprehensive metagenomic approach was used to compare seven environmental communities, originating from an agricultural biogas plant, cattle-associated samples, a lowland bog, sewage sludge from a wastewater treatment plant and sediments from an ancient gold mine. In addition to the native consortia, two laboratory communities cultivated on maize silage as the sole substrate were also analyzed. Results showed that all anaerobic communities harbored genes of all known methanogenesis pathways, but their abundance varied greatly between environments and that genes were encoded by different methanogens. Identification of microorganisms directly involved in different stages of methane production revealed that hydrogenotrophic methanogens, such as Methanoculleus, Methanobacterium, Methanobrevibacter, Methanocorpusculum or Methanoregula, predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant. Furthermore, in many environments, the methylotrophic pathway carried out by representatives of Methanomassiliicoccales, such as Candidatus Methanomethylophilus and Candidatus Methanoplasma, seemed to play an important role in methane production. In contrast, in stable laboratory reactors substrate versatile Methanosarcina predominated. CONCLUSIONS: The metagenomic approach presented in this study allowed for deep exploration and comparison of nine environments in which methane production occurs. Different abundance of methanogenesis-related functions was observed and the functions were analyzed in the phylogenetic context in order to identify microbes directly involved in methane production. In addition, a comparison of two metagenomic analytical tools, MG-RAST and MetAnnotate, revealed that combination of both allows for a precise characterization of methanogenic communities.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Metano/síntesis químicaRESUMEN
The study presents a comparison of the influence of a clinoptilolite-rich rock-zeolite (commonly used for improving anaerobic digestion processes)-and a highly porous clay mineral, halloysite (mainly used for gas purification), on the biogas production process. Batch experiments showed that the addition of each mineral increased the efficiency of mesophilic anaerobic digestion of both sewage sludge and maize silage. However, halloysite generated 15% higher biogas production during maize silage transformation. Halloysite also contributed to a much higher reduction of chemical oxygen demand for both substrates (by ~8% for maize silage and ~14% for sewage sludge) and a higher reduction of volatile solids and total ammonia for maize silage (by ~8% and ~4%, respectively). Metagenomic analysis of the microbial community structure showed that the addition of both mineral sorbents influenced the presence of key members of archaea and bacteria occurring in a well-operated biogas reactor. The significant difference between zeolite and halloysite is that the latter promoted the immobilization of key methanogenic archaea Methanolinea (belong to Methanomicrobia class). Based on this result, we postulate that halloysite could be useful not only as a sorbent for (bio)gas treatment methodologies but also as an agent for improving biogas production.
RESUMEN
The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.
RESUMEN
The plasmid pSinA of Sinorhizobium sp. M14 was used as a source of functional phenotypic modules, encoding proteins involved in arsenite oxidation and arsenic resistance, to obtain recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidative ability. An arsenite oxidation module was cloned into pBBR1MCS-2 vector yielding plasmid vector pAIO1, while an arsenic resistance module was cloned into pCM62 vector yielding plasmid pARS1. Both plasmid constructs were introduced (separately and together) into the cells of phylogenetically distant (representing Alpha-, Beta-, and Gammaproteobacteria) and physiologically diversified (unable to oxidize arsenite and susceptible/resistant to arsenite and arsenate) bacteria. Functional analysis of the modified strains showed that: (i) the plasmid pARS1 can be used for the construction of strains with an increased resistance to arsenite [up to 20mM of As(III), (ii) the presence of the plasmid pAIO1 in bacteria previously unable to oxidize As(III) to As(V), contributes to the acquisition of arsenite oxidation abilities by these cells, (iii) the highest arsenite utilization rate are observed in the culture of strains harbouring both the plasmids pAIO1 and pARS1, (iv) the strains harbouring the plasmid pAIO1 were able to grow on arsenic-contaminated mine waters (â¼ 3.0 mg As L(-1)) without any supplementation.
Asunto(s)
Arsénico/farmacología , Farmacorresistencia Bacteriana , Plásmidos/genética , Proteobacteria/efectos de los fármacos , Proteobacteria/genética , Arsenitos/metabolismo , Clonación Molecular , Vectores Genéticos/genética , Proteobacteria/clasificación , Transformación BacterianaRESUMEN
Plasmid pSinA of Sinorhizobium sp. M14 (Alphaproteobacteria) is the first described, natural, self-transferable plasmid harboring a complete set of genes for oxidation of arsenite. Removal of this plasmid from cells of the host strain caused the loss of resistance to arsenic and heavy metals (Cd, Co, Zn and Hg) and abolished the ability to grow on minimal salt medium supplemented with sodium arsenite as the sole energy source. Plasmid pSinA was introduced into other representatives of Alphaproteobacteria which resulted in acquisition of new abilities concerning arsenic resistance and oxidation, as well as heavy metals resistance. Microcosm experiments revealed that plasmid pSinA can also be transferred via conjugation into other indigenous bacteria from microbial community of As-contaminated soils, including representatives of Alpha- and Gammaproteobacteria. Analysis of "natural" transconjugants showed that pSinA is functional (expresses arsenite oxidase) and is stably maintained in their cells after approximately 60 generations of growth under nonselective conditions. This work clearly demonstrates that pSinA is a self-transferable, broad-host-range plasmid, which plays an important role in horizontal transfer of arsenic metabolism genes.