Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 124(Pt 13): 2200-7, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21652629

RESUMEN

Heterozygous mutations of p63, a key transcription factor in epithelial development, are causative in a variety of human ectodermal dysplasia disorders. Although the mutation spectrum of these disorders displays a striking genotype-phenotype association, the molecular basis for this association is only superficially known. Here, we characterize the transcriptional activity and protein stability of ΔNp63 mutants (that is, mutants of a p63 isoform that lacks the N-terminal transactivation domain) that are found in ectrodactyly-ectodermal dysplasia-cleft syndrome (EEC), ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC) and nonsyndromic split-hand/split-foot malformation (SHFM). DNA-binding and sterile alpha motif (SAM) domain mutants accumulate in the skin of EEC and AEC syndrome patients, respectively, and show extended half lives in vitro. By contrast, C-terminal mutations found in SHFM patients have half-lives similar to that of the wild-type protein. The increased half-life of EEC and AEC mutant proteins was reverted by overexpression of wild-type ΔNp63. Interestingly, the mutant proteins exhibit normal binding to and degradation by the E3 ubiquitin ligase Itch. Finally, EEC and AEC mutant proteins have reduced transcriptional activity on several skin-specific gene promoters, whereas SHFM mutant proteins are transcriptionally active. Our results, therefore, provide evidence for a regulatory feedback mechanism for p63 that links transcriptional activity to regulation of protein homeostasis by an unknown mechanism. Disruption of this regulatory mechanism might contribute to the pathology of p63-related developmental disorders.


Asunto(s)
Displasia Ectodérmica/genética , Proteínas de la Membrana/metabolismo , Activación Transcripcional/genética , Labio Leporino/genética , Fisura del Paladar/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Anomalías del Ojo/genética , Párpados/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células HEK293 , Semivida , Humanos , Deformidades Congénitas de las Extremidades/genética , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Receptores de LDL/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Biochem Biophys Res Commun ; 401(4): 568-73, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20888799

RESUMEN

The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of ΔNp63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POU transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated ΔNp63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of ΔNp63. ΔNp63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and ΔNp63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between ΔNp63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.


Asunto(s)
Epidermis/fisiología , Queratinocitos/fisiología , Queratinas/genética , Factores de Transcripción de Octámeros/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/metabolismo , Diferenciación Celular/genética , Línea Celular , Células Epidérmicas , Humanos , Inmunoprecipitación , Queratina-10/antagonistas & inhibidores , Queratina-10/genética , Queratina-14/antagonistas & inhibidores , Queratina-14/genética , Queratinocitos/citología , Queratinas/antagonistas & inhibidores , Factores de Transcripción de Octámeros/genética , Regiones Promotoras Genéticas , Transactivadores/genética , Factores de Transcripción , Proteínas Supresoras de Tumor/genética
3.
Chemosphere ; 63(6): 942-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16307778

RESUMEN

Cyanide is a major environmental pollutant of the chemical and metallurgical industries. Although extremely toxic, cyanide can enzymatically be converted to the less toxic thiocyanate by rhodaneses (thiosulfate:cyanide sulfurtransferases, EC 2.8.1.1). We engineered a genetic system to express high levels of recombinant Pseudomonas aeruginosa rhodanese (r-RhdA) in Escherichia coli, and used this organism to test the role of r-RhdA in cyanide detoxification. Inducible expression of the rhdA gene under the control of the hybrid T7-lacO promoter yielded active r-RhdA over a 4-h period, though r-RhdA-expressing E. coli showed decreased viability starting from 1 h post-induction. At this time, Western blot analysis and enzymatic assay showed r-RhdA partition between the cytoplasm (95%) and the periplasm (5%). The accessibility of thiosulfate to r-RhdA was a limiting step for the sulfur transfer reaction in the cellular system, but cyanide conversion to thiocyanate could be increased upon permeabilization of the bacterial membrane. Specific r-RhdA activity was higher in the whole-cell assay than in the in vitro assay with pure enzyme (2154 vs. 816 micromol min-1 mg-1 r-RhdA, respectively), likely reflecting enzyme stability. The r-RhdA-dependent cyanide detoxification resulted in increased resistance of r-RhdA overexpressing E. coli to 5 mM cyanide. Bacterial survival was paralleled by release of thiocyanate into the medium. Our results indicate that cyanide detoxification by engineered E. coli cells is feasible under laboratory conditions, and suggest that microbial rhodaneses may contribute to cyanide transformation in natural environments.


Asunto(s)
Cianuros/análisis , Escherichia coli , Tiosulfato Azufretransferasa/genética , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental , Catálisis , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Organismos Modificados Genéticamente , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética
4.
J Mol Microbiol Biotechnol ; 15(2-3): 199-211, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18685272

RESUMEN

Cyanide is a dreaded chemical because of its toxic properties. Although cyanide acts as a general metabolic inhibitor, it is synthesized, excreted and metabolized by hundreds of organisms, including bacteria, algae, fungi, plants, and insects, as a mean to avoid predation or competition. Several cyanide compounds are also produced by industrial activities, resulting in serious environmental pollution. Bioremediation has been exploited as a possible alternative to chemical detoxification of cyanide compounds, and various microbial systems allowing cyanide degradation have been described. Enzymatic pathways involving hydrolytic, oxidative, reductive, and substitution/transfer reactions are implicated in detoxification of cyanide by bacteria and fungi. Amongst enzymes involved in transfer reactions, rhodanese catalyzes sulfane sulfur transfer from thiosulfate to cyanide, leading to the formation of the less toxic thiocyanate. Mitochondrial rhodanese has been associated with protection of aerobic respiration from cyanide poisoning. Here, the biochemical and physiological properties of microbial sulfurtransferases are reviewed in the light of the importance of rhodanese in cyanide detoxification by the cyanogenic bacterium Pseudomonas aeruginosa. Critical issues limiting the application of a rhodanese-based cellular system to cyanide bioremediation are also discussed.


Asunto(s)
Cianuros/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Sulfurtransferasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianuros/toxicidad , Regulación Bacteriana de la Expresión Génica , Inactivación Metabólica , Pseudomonas aeruginosa/genética , Sulfurtransferasas/metabolismo , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo
5.
Microbiology (Reading) ; 154(Pt 9): 2804-2813, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18757814

RESUMEN

The L-ornithine N(delta)-oxygenase PvdA catalyses the N(delta)-hydroxylation of L-ornithine in many Pseudomonas spp., and thus provides an essential enzymic function in the biogenesis of the pyoverdine siderophore. Here, we report a detailed analysis of the membrane topology of the PvdA enzyme from the bacterial pathogen Pseudomonas aeruginosa. Membrane topogenic determinants of PvdA were identified by computational analysis, and verified in Escherichia coli by constructing a series of translational fusions between PvdA and the PhoA (alkaline phosphatase) reporter enzyme. The inferred topological model resembled a eukaryotic reverse signal-anchor (type III) protein, with a single N-terminal domain anchored to the inner membrane, and the bulk of the protein spanning the cytosol. According to this model, the predicted transmembrane region should overlap the putative FAD-binding site. Cell fractionation and proteinase K accessibility experiments in P. aeruginosa confirmed the membrane-bound nature of PvdA, but excluded the transmembrane topology of its N-terminal hydrophobic region. Mutational analysis of PvdA, and complementation assays in a P. aeruginosa DeltapvdA mutant, demonstrated the dual (structural and functional) role of the PvdA N-terminal domain.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Oxigenasas de Función Mixta/química , Pseudomonas aeruginosa/enzimología , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Proteínas Bacterianas/metabolismo , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/enzimología , Escherichia coli/genética , Eliminación de Gen , Genes Bacterianos , Prueba de Complementación Genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oligopéptidos/biosíntesis , Ornitina/metabolismo , Mutación Puntual , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
6.
Biochimie ; 90(11-12): 1703-15, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18725265

RESUMEN

Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Mitocondrias/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , alfa-Tocoferol/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transporte Biológico , Línea Celular Tumoral , Humanos , Interleucina-4/metabolismo , Proteínas Recombinantes/metabolismo , Distribución Tisular
7.
IUBMB Life ; 59(2): 51-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17454295

RESUMEN

The rhodanese homology domain is a ubiquitous fold found in several phylogenetically related proteins encoded by eubacterial, archeal, and eukaryotic genomes. Although rhodanese-like proteins share evolutionary relationships, analysis of their sequences highlights that they are so heterogeneous to form the rhodanese superfamily. The variability occurs at different levels including sequence, active site loop length, presence of a critical catalytic Cys residue, and domain arrangement. Even within the same genome, multiple genes encode rhodanese-like proteins presenting with variably arranged rhodanese domain(s): as single or tandem domain(s), or combined with other protein domain(s). Given the highly variable organization of the rhodanese domain(s) and the context where it is found, here we review the structural organization and function of the rhodanese-like proteins. The overview of the most recent findings about rhodanese allow us to depict a superfamily of versatile proteins relying on persulfide chemistry to accomplish cellular functions spanning from resistance to environmental threats, such as cyanide, and key cellular reactions related to sulfur metabolism and progression of cell cycle.


Asunto(s)
Tiosulfato Azufretransferasa/química , Secuencia de Aminoácidos , Animales , Bacterias/enzimología , Bovinos , Cianuros/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/enzimología , Datos de Secuencia Molecular , Estructura Molecular , Estructura Terciaria de Proteína , Selenio/metabolismo , Alineación de Secuencia , Azufre/metabolismo , Tiosulfato Azufretransferasa/metabolismo
8.
Appl Environ Microbiol ; 73(2): 390-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17098912

RESUMEN

Cyanide is a serious environmental pollutant and a biocontrol metabolite in plant growth-promoting Pseudomonas species. Here we report on the presence of multiple sulfurtransferases in the cyanogenic bacterium Pseudomonas aeruginosa PAO1 and investigate in detail RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) which converts cyanide to less toxic thiocyanate. RhdA is a cytoplasmic enzyme acting as the principal rhodanese in P. aeruginosa. The rhdA gene forms a transcriptional unit with the PA4955 and psd genes and is controlled by two promoters located upstream of PA4955 and rhdA. Both promoters direct constitutive RhdA expression and show similar patterns of activity, involving moderate down-regulation at the stationary phase or in the presence of exogenous cyanide. We previously observed that RhdA overproduction protects Escherichia coli against cyanide toxicity, and here we show that physiological RhdA levels contribute to P. aeruginosa survival under cyanogenic conditions. The growth of a DeltarhdA mutant is impaired under cyanogenic conditions and fully restored upon complementation with rhdA. Wild-type P. aeruginosa outcompetes the DeltarhdA mutant in cyanogenic coculture assays. Hence, RhdA could be regarded as an effector of P. aeruginosa intrinsic resistance to cyanide, insofar as it provides the bacterium with a defense mechanism against endogenous cyanide toxicity, in addition to cyanide-resistant respiration.


Asunto(s)
Cianuros/toxicidad , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/enzimología , Tiosulfato Azufretransferasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Cianuros/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Tiocianatos/metabolismo , Tiosulfato Azufretransferasa/química , Tiosulfato Azufretransferasa/genética
9.
Biochem Biophys Res Commun ; 325(1): 85-90, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15522204

RESUMEN

Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/enzimología , Tiosulfato Azufretransferasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Azufre/metabolismo , Tiosulfato Azufretransferasa/genética
10.
IUBMB Life ; 55(2): 103-7, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12749692

RESUMEN

Three human proteins (hTAP1, hTAP2 and hTAP3) that are related to the yeast phosphatidylinositol/phosphatidylcholine transfer protein SEC14p were recently cloned in our laboratory. These proteins contain a relatively large hydrophobic pocket, the so called CRAL-TRIO domain, which is present also in other human proteins, such as CRALBP, alpha-TTP and MEG2. The CRAL-TRIO domains in these proteins bind ligands such as retinaldehyde, tocopherols and polyphosphoinositides, respectively. To screen for potential hTAPs ligands, we developed a semi-quantitative isoelectric point mobility shift assay (IPMS-assay) that allows assessing the binding of potential hydrophobic ligands to proteins. Purified proteins occupied with a charged ligand migrate differently on isoelectric focusing gels when compared with free protein. Competition of bound charged ligands with uncharged ones reverses the mobility shift, so that the relative affinities of the two ligands to the protein can be estimated.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética , Proteínas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Humanos , Focalización Isoeléctrica , Punto Isoeléctrico , Ligandos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Precursores de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA