Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 476(3): 283-293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044359

RESUMEN

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.


Asunto(s)
Resistencia a la Insulina , Enfermedades Mitocondriales , Animales , Dieta Alta en Grasa , Músculo Esquelético/metabolismo , Modelos Animales , Enfermedades Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
2.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398599

RESUMEN

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Asunto(s)
Proteínas del Citoesqueleto , NAD , Humanos , Cromatografía Líquida de Alta Presión , Proteínas del Dominio Armadillo
3.
Molecules ; 28(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37764216

RESUMEN

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Asunto(s)
Enfermedades Cardiovasculares , Café , Humanos , Enfermedades Cardiovasculares/prevención & control , Estrés Oxidativo , Antioxidantes , Biomarcadores , Inflamación
4.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764345

RESUMEN

The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.

5.
Pharmacol Res ; 163: 105219, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017649

RESUMEN

Metformin is a widely used glucose-lowering drug, although its impact on adipose tissue function remains elusive. Adipose tissue-derived molecules regulate diverse physiological mechanisms, including energy metabolism, insulin sensitization, and inflammatory response. Alternatively, it has remained relevant to understand the therapeutic regulation of adipokines in efforts to alleviate inflammation in conditions associated with the metabolic syndrome. The current qualitative analysis of available literature focused on randomized clinical trials (RCTs) assessing the association between administration of metformin and adipokine regulation in individuals with metabolic syndrome. The major electronic databases such as MEDLINE, Cochrane Library, Scopus, and EMBASE were searched for eligible RCTs. Overall, 13 RCTs met the inclusion criteria, with a total of 4605 participants. Patients with metabolic syndrome were characterized by a state of obesity, impaired glucose tolerance, insulin resistance, and type 2 diabetes. Cumulative evidence from these RCTs supported the blood glucose lowering effects of metformin, in addition to promoting weight loss, ameliorating insulin resistance, and reducing pro-inflammatory markers such as interleukin-6 and tumor necrosis factor-α in patients with metabolic syndrome. Importantly, these therapeutic effects are associated with the upregulation of adiponectin and suppression of leptin and resistin.


Asunto(s)
Adipoquinas/metabolismo , Hipoglucemiantes/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Síndrome Metabólico/sangre , Síndrome Metabólico/metabolismo , Metformina/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Cytokine ; 126: 154892, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704479

RESUMEN

The T-helper (Th1/Th2) paradigm is widely studied for its role in modulating an adaptive immune response, especially in relation to the onset of various autoimmune diseases. In fact, emerging evidence clearly shows an inverse relationship between Th1/Th2 cytokines and the development of type 2 diabetes (T2D) complications, which is accelerated by an exacerbated inflammatory state. Here, relevant studies reporting on any association between the levels of Th1/Th2 cytokines and the development of T2D were retrieved through major electronic databases such as The Cochrane Library, Embase and PubMed. Extracted evidence which mostly involved animal models and human subjects with T2D or metabolic syndrome was assessed for quality and risk of bias using the Downs and Black checklist and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Results strongly correlated raised Th1/Th2 cytokines such as interferon-gamma (IFN-γ)/interleukin (IL)-5 and IL-2/IL-5 ratios to T2D, and this was positively linked with the other complications including retinopathy and cardiovascular complications. Further, logistic regression analysis demonstrated that the Th1/Th2 ratios were significantly associated with impaired glucose homeostasis, abnormally enhanced lipid profiles, and insulin resistance. Although more studies making use of a larger sample size are required, current data suggest that optimal modulation of Th1/Th2 cytokines may be an important aspect in the management of T2D and its associated complications.


Asunto(s)
Citocinas/sangre , Diabetes Mellitus Tipo 2/patología , Células TH1/inmunología , Balance Th1 - Th2/fisiología , Células Th2/inmunología , Adulto , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/patología , Citocinas/metabolismo , Retinopatía Diabética/patología , Femenino , Humanos , Resistencia a la Insulina/fisiología , Masculino , Síndrome Metabólico/patología , Ratones , Persona de Mediana Edad
7.
Int J Mol Sci ; 21(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375340

RESUMEN

Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.


Asunto(s)
Adipoquinas/metabolismo , Biomarcadores , Suplementos Dietéticos , Peroxidación de Lípido/efectos de los fármacos , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ubiquinona/análogos & derivados , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/patología , Estrés Oxidativo/efectos de los fármacos , Sesgo de Publicación , Ubiquinona/administración & dosificación
8.
Pharmacol Res ; 146: 104332, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31254666

RESUMEN

Excessive adiposity in an obese state is known to drive the onset of metabolic dysregulations, mostly involving chronic immune activation and oxidative stress. Prolonged inflammation and oxidative stress have been linked to impaired adipose tissue function and the development of the metabolic syndrome. Currently available therapies offer minimal prophylactic effects, while substantial experimental evidence supports the ameliorative effects of N-acetylcysteine (NAC) against various metabolic complications associated with obesity. The current review provides a comprehensive synthesis of studies published in major search engines such as PubMed, Cochrane library, Embase, and Google Scholar assessing the therapeutic effect of NAC against obesity associated complications. Overwhelming literature included in this review supports the ameliorative effects of NAC against such complications in both in vitro and in vivo models of obesity. In addition to attenuating an abnormal pro-inflammatory response and limiting oxidative damage, NAC could inhibit lipid accumulation by targeting adipogenic transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein beta (C/EBPß), and improve insulin sensitivity through augmenting phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. Although necessary evidence informing on its optimal dose and its comparative effect with other well-studied pharmacological compounds is demonstrated, it is clear that future investigations are required to confirm the therapeutic effect of NAC in obese human subjects.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Humanos , Inflamación/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo
9.
Molecules ; 24(5)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813554

RESUMEN

Menaquinone-7 (MK7) is a member of the vitamin K family in which interest has considerably increased over the last decade, mainly due to its beneficial role in human health. MK7 can be produced by synthesis or fermentation, and its purity profile can differ depending on methodologies and extraction procedures. Finished formulations show a high heterogeneity of purity profiles, as well as frequent discrepancies in the nominal content, compared to the actual title. The present study compared purity profiles of different raw material and related them to their stability in normal (12 months/25 °C/60%RH) and accelerated conditions (6 months/40 °C/75% RH) in order to test their performance in the presence of different common excipients. Results showed higher purity profile results in enhanced stability, and this could explain title discrepancies found in finished products, which are present on the market worldwide.


Asunto(s)
Composición de Medicamentos/métodos , Vitamina K 2/análogos & derivados , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos , Estabilidad de Medicamentos , Fermentación , Estructura Molecular , Polvos , Vitamina K 2/análisis , Vitamina K 2/síntesis química , Vitamina K 2/química
10.
Molecules ; 24(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052590

RESUMEN

Type 2 diabetic patients possess a two to four fold-increased risk for Cardiovascular Diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.


Asunto(s)
Chalconas/farmacología , LDL-Colesterol/sangre , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores , Glucemia/efectos de los fármacos , Chlorocebus aethiops , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Lípidos/sangre , Lipoproteínas LDL/sangre , Masculino , Extractos Vegetales/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/sangre
11.
Toxicol Rep ; 12: 234-243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38356855

RESUMEN

Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells. Briefly, assays performed included metabolic activity, cholesterol content, mitochondrial respiration, and prominent markers of oxidative stress, as well as determining changes in mitochondrial potential, mitochondrial production of reactive oxygen species, and intracellular antioxidant levels like glutathione, glutathione peroxidase and superoxide dismutase. Cellular damage was probed using fluorescent stains, annexin V and propidium iodide. Our results indicated that prolonged exposure (24-hours) to palmitic acid doses ≥ 0.5 mM significantly impaired mitochondrial oxidative status, leading to enhanced mitochondrial membrane potential and increased mitochondrial ROS production. While palmitic acid dose of 1 mM appeared to induce prominent cardiomyoblasts damage, likely because of its capacity to increase cholesterol content/ lipid peroxidation and severely suppressing intracellular antioxidants. Interestingly, short-term (4-hours) exposure to palmitic acid, especially for lower doses (≤ 0.25 mM), could improve metabolic activity, mitochondrial function and protect against oxidative stress induced myocardial damage. Potentially suggesting that, depending on the dose consumed or duration of exposure, consumption of saturated fatty acids such as palmitic acid can differently affect the myocardium. However, these results are still preliminary, and in vivo research is required to understand the significance of maintaining intracellular antioxidants to protect against oxidative stress induced by lipid overload.

12.
Food Funct ; 15(14): 7468-7477, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912918

RESUMEN

Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.


Asunto(s)
Fibras de la Dieta , Suplementos Dietéticos , Drosophila melanogaster , Microbioma Gastrointestinal , Longevidad , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Longevidad/efectos de los fármacos , Femenino , Masculino , Fibras de la Dieta/farmacología , Fibras de la Dieta/metabolismo , Encéfalo/metabolismo
13.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107339

RESUMEN

Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.

14.
Biofactors ; 48(5): 1129-1136, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35583412

RESUMEN

Carboxylative enzymes are involved in many pathways and their regulation plays a crucial role in many of these pathways. In particular, γ-glutamylcarboxylase (GGCX) converts glutamate residues (Glu) into γ-carboxyglutamate (Gla) of the vitamin K-dependent proteins (VKDPs) activating them. VKDPs include at least 17 proteins involved in processes such as blood coagulation, blood vessels calcification, and bone mineralization. VKDPs are activated by the reduced form of vitamin K, naturally occurring as vitamin K1 (phylloquinone) and K2 (menaquinones, MKs). Among these, MK7 is the most efficient in terms of bioavailability and biological effect. Similarly to other trans isomers, it is produced by natural fermentation or chemically in both trans and cis. However, the efficacy of the biological effect of the different isomers and the impact on humans are unknown. Our study assessed carboxylative efficacy of trans and cis MK7 and compared it with other vitamin K isomers, evaluating both the expression of residues of carboxylated Gla-protein by western blot analysis and using a cell-free system to determine the GGCX activity by HPLC. Trans MK7H2 showed a higher ability to carboxylate the 70 KDa GLA-protein, previously inhibited in vitro by warfarin treatment. However, cis MK7 also induced a carboxylation activity albeit of a small extent. The data were confirmed chromatographically, in which a slight carboxylative activity of cis MK7H2 was demonstrated, comparable with both K1H2 and oxidized trans MK7 but less than trans MK7H2 . For the first time, a difference of biological activity between cis and trans configuration of menaquinone-7 has been reported.


Asunto(s)
Vitamina K 1 , Vitamina K , Ácido 1-Carboxiglutámico , Humanos , Vitamina K/farmacología , Vitamina K 1/metabolismo , Vitamina K 1/farmacología , Vitamina K 2/metabolismo , Vitamina K 2/farmacología , Warfarina/farmacología
15.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35204095

RESUMEN

The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (ß-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and ß-carotene) and of phylloquinone was comparable. The lutein and ß-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.

16.
Oxid Med Cell Longev ; 2022: 1744408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222791

RESUMEN

Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.


Asunto(s)
Longevidad/efectos de los fármacos , Estilbenos/farmacología , Animales , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Longevidad/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Factores Sexuales
17.
Biomed Pharmacother ; 153: 113439, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076554

RESUMEN

Diabetic neuropathy is a risk factor for developing complications such as autonomic cardiovascular disease, osteoarthropathy, foot ulcers, and infections, which may be the direct cause of death. Even worse, patients plagued by this condition display painful neuropathic symptoms that are usually severe and frequently lead to depression, anxiety, and sleep disarrays, eventually leading to a poor quality of life. There is a general interest in evaluating the therapeutic properties of topical capsaicin cream as an effective agent for pain relief in these patients. As such, the current review makes use of major search engines like PubMed and Google Scholar, to bring an updated analysis of clinical studies reporting on the therapeutic effects of capsaicin in patients with painful diabetic neuropathy. In fact, most of the summarized literature indicates that topical capsaicin (0.075 %) cream, when applied to the painful areas for approximately 8 weeks, can reduce pain, which may lead to clinical improvements in walking, working, and sleeping in patients with painful diabetic neuropathy. The current review also discusses essential information on capsaicin, including its source, bioavailability profile, as well as treatment doses and duration, to highlight its therapeutic potential.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Administración Tópica , Capsaicina/efectos adversos , Diabetes Mellitus/tratamiento farmacológico , Humanos , Dolor/tratamiento farmacológico , Calidad de Vida
18.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290794

RESUMEN

Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress. This consequence mainly drives poor glycemic control and metabolic complications that are implicated in the development of cardiovascular disease. The current review explores the pathological relevance of elevated lipid peroxidation products in T2D, especially highlighting their potential role as biomarkers and therapeutic targets in disease severity. In addition, we briefly explain the implication of some prominent antioxidant enzymes/factors involved in the blockade of lipid peroxidation, including termination reactions that involve the effect of antioxidants, such as catalase, coenzyme Q10, glutathione peroxidase, and superoxide dismutase, as well as vitamins C and E.

19.
Metallomics ; 13(11)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34724067

RESUMEN

New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.


Asunto(s)
Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Técnicas In Vitro , Estructura Molecular
20.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439573

RESUMEN

The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA