Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28595361

RESUMEN

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/fisiología , Células-Madre Neurales/metabolismo , Animales , Factor Inductor de la Apoptosis/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Cognición , Disfunción Cognitiva/metabolismo , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Transducción de Señal
2.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27325572

RESUMEN

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Giro Dentado/citología , Giro Dentado/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteína de Retinoblastoma/metabolismo , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Embrión de Mamíferos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción SOXB1/metabolismo
3.
Dev Dyn ; 240(12): 2613-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22052812

RESUMEN

Retinoic acid receptor beta 2 (RARß2) has been proposed as an important receptor mediating retinoid-induced axonal growth and regeneration in developing mammalian spinal cord and brain. In urodele amphibians, organisms capable of extensive central nervous system (CNS) regeneration as adults, this receptor had not been isolated, nor had its function been characterized. We have cloned a full-length RARß2 cDNA from adult newt CNS. This receptor, NvRARß2, is expressed in various adult organs capable of regeneration, including the spinal cord. Interestingly, both the NvRARß2 mRNA and protein are up-regulated during the first 2 weeks after amputation of the tail, primarily in the ependymoglial and meningeal tissues near the rostral cut surface of the cord. Treatment with LE135, a RARß-selective antagonist, caused a significant inhibition of ependymal outgrowth and a decrease in tail regenerate length. These data support an early role for this receptor in caudal spinal cord and tail regeneration in this amphibian.


Asunto(s)
Proteínas Anfibias/biosíntesis , Regulación de la Expresión Génica/fisiología , Receptores de Ácido Retinoico/biosíntesis , Regeneración/fisiología , Médula Espinal/fisiología , Cola (estructura animal)/fisiología , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Dibenzazepinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Notophthalmus viridescens , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/fisiología , Ratas , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/genética , Regeneración/efectos de los fármacos , Médula Espinal/patología , Traumatismos Vertebrales/genética , Traumatismos Vertebrales/metabolismo , Traumatismos Vertebrales/patología , Cola (estructura animal)/lesiones , Cola (estructura animal)/patología
4.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323247

RESUMEN

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Células Madre Adultas/metabolismo , Neurogénesis/fisiología , División Celular , Ciclo Celular , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
5.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27237737

RESUMEN

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Asunto(s)
Linaje de la Célula , Núcleo Celular/genética , Dinámicas Mitocondriales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transcripción Genética , Adenosina Trifosfato/farmacología , Animales , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Núcleo Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Cognición/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Eliminación de Gen , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Células-Madre Neurales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
6.
J Vis Exp ; (95): 51983, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25650557

RESUMEN

Genetic deletion using the Cre-Lox system in transgenic mouse lines is a powerful tool used to study protein function. However, except in very specific Cre models, deletion of a protein throughout a tissue or cell population often leads to complex phenotypes resulting from multiple interacting mechanisms. Determining whether a phenotype results from disruption of a cell autonomous mechanism, which is intrinsic to the cell in question, or from a non-cell autonomous mechanism, which would result from impairment of that cell's environment, can be difficult to discern. To gain insight into protein function in an in vivo context, in utero electroporation (IUE) enables gene deletion in a small subset of cells within the developing cortex or some other selected brain region. IUE can be used to target specific brain areas, including the dorsal telencephalon, medial telencephalon, hippocampus, or ganglionic eminence. This facilitates observation of the consequences of cell autonomous gene deletion in the context of a healthy environment. The goal of this protocol is to show how IUE can be used to analyze a defect in radial migration in a floxed transgenic mouse line, with an emphasis on distinguishing between the cell autonomous and non-cell autonomous effects of protein deletion. By comparing the phenotype resulting from gene deletion within the entire cortex versus IUE-mediated gene deletion in a limited cell population, greater insight into protein function in brain development can be obtained than by using either technique in isolation.


Asunto(s)
Encéfalo/fisiología , Movimiento Celular/fisiología , Electroporación/métodos , Técnicas de Silenciamiento del Gen/métodos , Neuronas/fisiología , Proteína de Retinoblastoma/fisiología , Proteína p107 Similar a la del Retinoblastoma/fisiología , Animales , Encéfalo/citología , Embrión de Mamíferos , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Embarazo , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA