RESUMEN
Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.
Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Microbiota , Animales , Bacterias/metabolismo , Índice de Masa Corporal , Femenino , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Obesidad/microbiología , Gemelos Dicigóticos , Gemelos MonocigóticosRESUMEN
Technologies for genome-wide sequence interrogation have dramatically improved our ability to identify loci associated with complex human disease. However, a chasm remains between correlations and causality that stems, in part, from a limiting theoretical framework derived from Mendelian genetics and an incomplete understanding of disease physiology. Here we propose a set of criteria, akin to Koch's postulates for infectious disease, for assigning causality between genetic variants and human disease phenotypes.
Asunto(s)
Enfermedad/genética , Genómica/métodos , Fenotipo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Causalidad , Variación Genética , Humanos , Herencia MultifactorialRESUMEN
The piRNA pathway is a highly conserved mechanism to repress transposable element (TE) activity in the animal germline via a specialized class of small RNAs called piwi-interacting RNAs (piRNAs). piRNAs are produced from discrete genomic regions called piRNA clusters (piCs). Although the molecular processes by which piCs function are relatively well understood in Drosophila melanogaster, much less is known about the origin and evolution of piCs in this or any other species. To investigate piC origin and evolution, we use a population genomic approach to compare piC activity and sequence composition across eight geographically distant strains of D. melanogaster with high-quality long-read genome assemblies. We perform annotations of ovary piCs and genome-wide TE content in each strain. Our analysis uncovers extensive variation in piC activity across strains and signatures of rapid birth and death of piCs. Most TEs inferred to be recently active show an enrichment of insertions into old and large piCs, consistent with the previously proposed "trap" model of piC evolution. In contrast, a small subset of active LTR families is enriched for the formation of new piCs, suggesting that these TEs have higher proclivity to form piCs. Thus, our findings uncover processes leading to the origin of piCs. We propose that piC evolution begins with the emergence of piRNAs from individual insertions of a few select TE families prone to seed new piCs that subsequently expand by accretion of insertions from most other TE families during evolution to form larger "trap" clusters. Our study shows that TEs themselves are the major force driving the rapid evolution of piCs.
Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , Evolución Molecular , Ovario , ARN Interferente Pequeño , Animales , Drosophila melanogaster/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Femenino , Ovario/metabolismo , Familia de Multigenes , ARN de Interacción con PiwiRESUMEN
Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Susceptibilidad a Enfermedades , Diabetes Mellitus Tipo 2/genética , Evolución Biológica , GenómicaRESUMEN
Sex peptide (SP), a seminal fluid protein of Drosophila melanogaster males, has been described as driving a virgin-to-mated switch in females, through eliciting an array of responses including increased egg laying, activity, and food intake and a decreased remating rate. While it is known that SP achieves this, at least in part, by altering neuronal signaling in females, the genetic architecture and temporal dynamics of the female's response to SP remain elusive. We used a high-resolution time series RNA-sequencing dataset of female heads at 10 time points within the first 24 h after mating to learn about the genetic architecture, at the gene and exon levels, of the female's response to SP. We find that SP is not essential to trigger early aspects of a virgin-to-mated transcriptional switch, which includes changes in a metabolic gene regulatory network. However, SP is needed to maintain and diversify metabolic changes and to trigger changes in a neuronal gene regulatory network. We further find that SP alters rhythmic gene expression in females and suggests that SP's disruption of the female's circadian rhythm might be key to its widespread effects.
Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Masculino , Femenino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Espermatozoides/metabolismo , Relojes Circadianos/genética , Factores de Tiempo , Péptidos/metabolismo , Perfilación de la Expresión Génica , Conducta Sexual Animal/fisiologíaRESUMEN
The body's microbiome, composed of microbial cells that number in the trillions, is involved in human health and disease in ways that are just starting to emerge. The microbiome is assembled at birth, develops with its host, and is greatly influenced by environmental factors such as diet and other exposures. Recently, a role for human genetic variation has emerged as also influential in accounting for interpersonal differences in microbiomes. Thus, human genes may influence health directly or by promoting a beneficial microbiome. Studies of the heritability of gut microbiotas reveal a subset of microbes whose abundances are partly genetically determined by the host. However, the use of genome-wide association studies (GWASs) to identify human genetic variants associated with microbiome phenotypes has proven challenging. Studies to date are small by GWAS standards, and cross-study comparisons are hampered by differences in analytical approaches. Nevertheless, associations between microbes or microbial genes and human genes have emerged that are consistent between human populations. Most notably, higher levels of beneficial gut bacteria called Bifidobacteria are associated with the human lactase nonpersister genotype, which typically confers lactose intolerance, in several different human populations. It is time for the microbiome to be incorporated into studies that quantify interactions among genotype, environment, and the microbiome in order to predict human disease susceptibility.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Microbioma Gastrointestinal/fisiología , Genoma Humano , Intolerancia a la Lactosa/genética , Obesidad/genética , Esquizofrenia/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/microbiología , Esclerosis Amiotrófica Lateral/patología , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/metabolismo , Dieta/métodos , Tracto Gastrointestinal/microbiología , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Genética Humana , Humanos , Intolerancia a la Lactosa/metabolismo , Intolerancia a la Lactosa/microbiología , Intolerancia a la Lactosa/patología , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/patología , Fenotipo , Carácter Cuantitativo Heredable , Esquizofrenia/metabolismo , Esquizofrenia/microbiología , Esquizofrenia/patologíaRESUMEN
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-µm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.
Asunto(s)
Blastómeros , Desarrollo Embrionario , Animales , Blastómeros/metabolismo , Embrión de Mamíferos , Femenino , Ratones , Morfogénesis , Embarazo , CigotoRESUMEN
Genomic imprinting is a parent-of-origin-specific expression phenomenon that plays fundamental roles in many biological processes. In animals, imprinting is only observed in therian mammals, with â¼200 imprinted genes known in humans and mice. The imprinting pattern in marsupials has been minimally investigated by examining orthologs to known eutherian imprinted genes. To identify marsupial-specific imprinting in an unbiased way, we performed RNA-seq studies on samples of fetal brain and placenta from the reciprocal cross progeny of two laboratory opossum stocks. We inferred allele-specific expression for >3,000 expressed genes and discovered/validated 13 imprinted genes, including three previously known imprinted genes, Igf2r, Peg10, and H19. We estimate that marsupials imprint â¼60 autosomal genes, which is a much smaller set compared with eutherians. Among the nine novel imprinted genes, three noncoding RNAs have no known homologs in eutherian mammals, while the remaining genes have important functions in pluripotency, transcription regulation, nucleolar homeostasis, and neural differentiation. Methylation analyses at promoter CpG islands revealed differentially methylated regions in five of these marsupial-specific imprinted genes, suggesting that differential methylation is a common mechanism in the epigenetic regulation of marsupial imprinting. Clustering and co-regulation were observed at marsupial imprinting loci Pou5f3-Npdc1 and Nkrfl-Ipncr2, but eutherian-type multi-gene imprinting clusters were not detected. Also differing from eutherian mammals, the brain and placenta imprinting profiles are remarkably similar in opossums, presumably due to the shared origin of these organs from the trophectoderm. Our results contribute to a fuller understanding of the origin, evolution, and mechanisms of genomic imprinting in therian mammals.
Asunto(s)
Marsupiales , Embarazo , Humanos , Femenino , Animales , Ratones , Marsupiales/genética , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Impresión Genómica , Zarigüeyas/genética , Mamíferos , Euterios/genéticaRESUMEN
An individual's genetics can dramatically influence breast cancer (BC) risk. Although clinical measures for prevention do exist, non-invasive personalized measures for reducing BC risk are limited. Commonly used medications are a promising set of modifiable factors, but no previous study has explored whether a range of widely taken approved drugs modulate BC genetics. In this study, we describe a quantitative framework for exploring the interaction between the genetic susceptibility of BC and medication usage among UK Biobank women. We computed BC polygenic scores (PGSs) that summarize BC genetic risk and find that the PGS explains nearly three-times greater variation in disease risk within corticosteroid users compared to non-users. We map 35 genes significantly interacting with corticosteroid use (FDR < 0.1), highlighting the transcription factor NRF2 as a common regulator of gene-corticosteroid interactions in BC. Finally, we discover a regulatory variant strongly stratifying BC risk according to corticosteroid use. Within risk allele carriers, 18.2% of women taking corticosteroids developed BC, compared to 5.1% of the non-users (with an HR = 3.41 per-allele within corticosteroid users). In comparison, there are no differences in BC risk within the reference allele homozygotes. Overall, this work highlights the clinical relevance of gene-drug interactions in disease risk and provides a roadmap for repurposing biobanks in drug repositioning and precision medicine.
Asunto(s)
Corticoesteroides/efectos adversos , Neoplasias de la Mama/genética , Interacción Gen-Ambiente , Herencia Multifactorial , Factor 2 Relacionado con NF-E2/genética , Medicamentos bajo Prescripción/efectos adversos , Alelos , Bancos de Muestras Biológicas , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Factor 2 Relacionado con NF-E2/metabolismo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Medición de Riesgo , Reino Unido/epidemiologíaRESUMEN
Although thousands of loci have been associated with human phenotypes, the role of gene-environment (GxE) interactions in determining individual risk of human diseases remains unclear. This is partly because of the severe erosion of statistical power resulting from the massive number of statistical tests required to detect such interactions. Here, we focus on improving the power of GxE tests by developing a statistical framework for assessing quantitative trait loci (QTLs) associated with the trait means and/or trait variances. When applying this framework to body mass index (BMI), we find that GxE discovery and replication rates are significantly higher when prioritizing genetic variants associated with the variance of the phenotype (vQTLs) compared to when assessing all genetic variants. Moreover, we find that vQTLs are enriched for associations with other non-BMI phenotypes having strong environmental influences, such as diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such as BMI can be used for GxE discovery in disease phenotypes such as diabetes. A clear conclusion is that strong GxE interactions mediate the genetic contribution to body weight and diabetes risk.
Asunto(s)
Variación Biológica Poblacional/genética , Estudio de Asociación del Genoma Completo/métodos , Interacción Gen-Ambiente , Genotipo , Humanos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo HeredableRESUMEN
BACKGROUND: The female reproductive tract is exposed directly to the male's ejaculate, making it a hotspot for mating-induced responses. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertility. Many changes occur within minutes after mating, but such early timepoints are absent from published RNA-seq studies. We measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated and mated females collected at 10-15 min post-mating. We further investigated whether early transcriptome changes in the female reproductive tract are influenced by inhibiting BMPs in secondary cells, a condition that depletes exosomes from the male's ejaculate. RESULTS: We identified 327 differentially expressed genes. These were mostly upregulated post-mating and have roles in tissue morphogenesis, wound healing, and metabolism. Differentially abundant microRNAs were mostly downregulated post-mating. We identified 130 predicted targets of these microRNAs among the differentially expressed genes. We saw no detectable effect of BMP inhibition in secondary cells on transcript levels in the female reproductive tract. CONCLUSIONS: Our results indicate that mating induces early changes in the female reproductive tract primarily through upregulation of target genes, rather than repression. The upregulation of certain target genes might be mediated by the mating-induced downregulation of microRNAs. Male-derived exosomes and other BMP-dependent products were not uniquely essential for this process. Differentially expressed genes and microRNAs provide candidates that can be further examined for their participation in the earliest alterations of the reproductive tract microenvironment.
Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Femenino , Masculino , Drosophila melanogaster/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Reproducción/genética , Fertilidad/fisiología , Genitales , Conducta Sexual Animal , Proteínas de Drosophila/genéticaRESUMEN
Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.
Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , ARN Interferente Pequeño , Animales , Drosophila melanogaster/genética , Evolución Molecular , ARN Interferente Pequeño/genéticaRESUMEN
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.
Asunto(s)
Colágeno , Matriz Extracelular , Movimiento Celular , Fenómenos MecánicosRESUMEN
Next-generation sequencing methods use massively parallel detection of short sequencing reactions, making them ideal for the analysis of ancient DNA. In this issue, Green et al. (2008) exploit this feature to infer the complete mitochondrial genome sequence of one Neanderthal and place bounds on its time of common ancestry with modern humans.
Asunto(s)
ADN Mitocondrial/genética , Fósiles , Hominidae/genética , Animales , Humanos , Análisis de Secuencia de ADNRESUMEN
Engineered gene drives are being explored as a new strategy in the fight against vector-borne diseases due to their potential for rapidly spreading genetic modifications through a population. However, CRISPR-based homing gene drives proposed for this purpose have faced a major obstacle in the formation of resistance alleles that prevent Cas9 cleavage. Here, we present a homing drive in Drosophila melanogaster that reduces the prevalence of resistance alleles below detectable levels by targeting a haplolethal gene with two guide RNAs (gRNAs) while also providing a rescue allele. Resistance alleles that form by end-joining repair typically disrupt the haplolethal target gene and are thus removed from the population because individuals that carry them are nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no functional resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals within a few generations. These results show that a haplolethal homing drive can provide an effective tool for targeted genetic modification of entire populations.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Alelos , Animales , Sistemas CRISPR-Cas , Drosophila melanogaster/fisiología , Femenino , Edición Génica , Células Germinativas/citología , Masculino , Modelos Genéticos , Linaje , ARN Guía de Kinetoplastida/genéticaRESUMEN
The accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable elements (TEs). Because the types and sequences of TEs are highly variable across species, automated TE discovery and annotation are challenging and time-consuming tasks. A critical first step is the de novo identification and accurate compilation of sequence models representing all of the unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a pipeline that greatly facilitates this process. This program brings substantial improvements over the original version of RepeatModeler, one of the most widely used tools for TE discovery. In particular, this version incorporates a module for structural discovery of complete long terminal repeat (LTR) retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated identification because of their size and sequence complexity. We benchmarked RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually curated TE libraries: Drosophila melanogaster (fruit fly), Danio rerio (zebrafish), and Oryza sativa (rice). In these three species, RepeatModeler2 identified approximately 3 times more consensus sequences matching with >95% sequence identity and sequence coverage to the manually curated sequences than the original RepeatModeler. As expected, the greatest improvement is for LTR retroelements. Thus, RepeatModeler2 represents a valuable addition to the genome annotation toolkit that will enhance the identification and study of TEs in eukaryotic genome sequences. RepeatModeler2 is available as source code or a containerized package under an open license (https://github.com/Dfam-consortium/RepeatModeler, http://www.repeatmasker.org/RepeatModeler/).
Asunto(s)
Elementos Transponibles de ADN/genética , Genómica/métodos , Animales , Drosophila melanogaster/genética , Genoma , Oryza/genética , Programas Informáticos , Pez Cebra/genéticaRESUMEN
BACKGROUND: Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. RESULTS: Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a regionally confined CRISPR Toxin-Antidote Recessive Embryo (TARE) drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency). CONCLUSIONS: Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations.
Asunto(s)
Tecnología de Genética Dirigida , Animales , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Drosophila/genética , Tecnología de Genética Dirigida/métodosRESUMEN
In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains inadequate. Here, we analyze the postmating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; Drosophila novamexicana females produce only â¼1% fertilized eggs in crosses with Drosophila americana males, compared to â¼98% produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study, we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the postmating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, postmating responses in con- and heterospecific matings are largely congruent, but heterospecific matings induce expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. These results show that the female's postmating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.
Asunto(s)
Drosophila/genética , Evolución Molecular , Aislamiento Reproductivo , Animales , Copulación , Drosophila/metabolismo , Femenino , Genitales Femeninos/metabolismo , Masculino , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Plasma Seminal , Transcripción Genética , TranscriptomaRESUMEN
A common assumption in dating patrilineal events using Y-chromosome sequencing data is that the Y-chromosome mutation rate is invariant across haplogroups. Previous studies revealed interhaplogroup heterogeneity in phylogenetic branch length. Whether this heterogeneity is caused by interhaplogroup mutation rate variation or nongenetic confounders remains unknown. Here, we analyzed whole-genome sequences from cultured cells derived from >1,700 males. We confirmed the presence of branch length heterogeneity. We demonstrate that sex-chromosome mutations that appear within cell lines, which likely occurred somatically or in vitro (and are thus not influenced by nongenetic confounders) are informative for germline mutational processes. Using within-cell-line mutations, we computed a relative Y-chromosome somatic mutation rate, and uncovered substantial variation (up to 83.3%) in this proxy for germline mutation rate among haplogroups. This rate positively correlates with phylogenetic branch length, indicating that interhaplogroup mutation rate variation is a likely cause of branch length heterogeneity.
Asunto(s)
Cromosomas Humanos Y , Tasa de Mutación , Mutación de Línea Germinal , Haplotipos , Humanos , Masculino , FilogeniaRESUMEN
In the mitochondrial genome, sexual asymmetry in transmission allows the accumulation of male-harming mutations since selection acts only on the effect of the mutation in females. Called the 'Mother's Curse', this phenomenon induces a selective pressure for nuclear variants that compensate for this reduction in male fitness. Previous work has demonstrated the existence of these interactions and their potential to act as Dobzhansky-Muller incompatibilities, contributing to reproductive isolation between populations. However, it is not clear how readily they would give rise to and sustain hybrid incompatibilities. Here, we use computer simulations in SLiM 3 to investigate the consequences of sexually antagonistic mitochondrial-nuclear interactions in a subdivided population. We consider distinct migration schemes and vary the chromosomal location, and consequently the transmission pattern, of nuclear restorers. Disrupting these co-evolved interactions results in less-fit males, skewing the sex ratio toward females. Restoration of male fitness depends on both the chromosomal location of nuclear restorer loci and the migration scheme. Our results show that these interactions may act as Dobzhansky-Muller incompatibilities, but their strength is not enough to drive population isolation. Overall, this model shows the varied ways in which populations can respond to migration's disruption of co-evolved mitochondrial-nuclear interactions.