Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 29(16): e202203806, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36511153

RESUMEN

The use of a sterically demanding pincer ligand to prepare an unusual square planar aluminium complex is reported. Due to the constrained geometry imposed by the ligand scaffold, this four-coordinate aluminium centre remains Lewis acidic and reacts via differing metal-ligand cooperative pathways for activating ketones and CO2 . It is also a rare example of a single-component aluminium system for the catalytic reduction of CO2 to a methanol equivalent at room temperature.

2.
Inorg Chem ; 62(42): 17299-17309, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37819728

RESUMEN

We report for the first time the synthesis of [C(NH2)3]Cr(HCOO)3 stabilizing Cr2+ in formate perovskite, which adopts a polar structure and orders magnetically below 8 K. We discuss in detail the magnetic properties and their coupling to the crystal structure based on first-principles calculations, symmetry, and model Hamiltonian analysis. We establish a general model for the orbital magnetic moment of [C(NH2)3]M(HCOO)3 (M = Cr, Cu) based on perturbation theory, revealing the key role of the Jahn-Teller distortions. We also analyze their spin and orbital textures in k-space, which show unique characteristics.

3.
Chemistry ; 28(32): e202200855, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357728

RESUMEN

This work describes a homometallic spin- 1 / 2 tetrabromocuprate adopting a bilayer structure. Magnetic-susceptibility measurements show a broad maximum centred near 70 K, with fits to this data using a Heisenberg model consistent with strong antiferromagnetic coupling between neighbouring copper atoms in different layers of the bilayer. There are further weak intralayer ferromagnetic interactions between copper cations in neighbouring dimers. First-principles calculations are consistent with this, but suggest there is only significant magnetic coupling within one direction of a layer; this would suggest the presence of a spin ladder within the bilayer with antiferromagnetic rung and weaker ferromagnetic rail couplings.

4.
Org Biomol Chem ; 19(9): 2008-2014, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33586753

RESUMEN

Organophosphorus (OP) chemical warfare agents (CWAs) represent an ongoing threat but the understandable widespread prohibition of their use places limitations on the development of technologies to counter the effects of any OP CWA release. Herein, we describe new, accessible methods for the identification of appropriate molecular simulants to mimic the hydrogen bond accepting capacity of the P[double bond, length as m-dash]O moiety, common to every member of this class of CWAs. Using the predictive methodologies developed herein, we have identified OP CWA hydrogen bond acceptor simulants for soman and sarin. It is hoped that the effective use of these physical property specific simulants will aid future countermeasure developments.

5.
J Chem Educ ; 98(12): 4013-4016, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34924600

RESUMEN

The thermal equilibration of himic anhydride [IUPAC (2-endo,3-endo)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid anhydride] to (2-exo,3-exo)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid anhydride and subsequent recrystallization of the exo-product can be performed as a standard undergraduate laboratory experiment requiring minimal equipment. The interpretation of the 1H NMR spectra for these norbornene carboxylic anhydride molecules promotes an appreciation of constrained ring systems and factors that affect chemical shifts and coupling constants.

6.
Chemistry ; 24(30): 7761-7773, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29633393

RESUMEN

Through this extensive structure-property study we show that critical micelle concentration correlates with self-associative hydrogen bond complex formation constant, when combined with outputs from low level, widely accessible, computational models. Herein, we bring together a series of 39 structurally related molecules related by stepwise variation of a hydrogen bond donor-acceptor amphiphilic salt. The self-associative and corresponding global properties for this family of compounds have been studied in the gas, solid and solution states. Within the solution state, we have shown the type of self-associated structure present to be solvent dependent. In DMSO, this class of compound show a preference for hydrogen bonded dimer formation, however moving into aqueous solutions the same compounds are found to form larger self-associated aggregates. This observation has allowed us the unique opportunity to investigate and begin to predict self-association events at both the molecular and extended aggregate level.

7.
Inorg Chem ; 57(18): 11530-11536, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30188696

RESUMEN

Phosphane-stabilized phosphenium cations react with silanes to effect either reduction to primary or secondary phosphanes, or formation of P-P bonded species depending upon counteranion. This operates for in situ generated phosphenium cations, allowing catalytic reduction of P(III)-Cl bonds in the absence of strong reducing agents. Anion and substituent dependence studies have allowed insight into the competing mechanisms involved.

8.
Inorg Chem ; 57(14): 8581-8587, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29969251

RESUMEN

The use of a new second-sphere coordination methodology for emission color tuning of iridium complexes is presented. We demonstrate that a complementary H-bonding guest molecule binding through contiguous triple H-bonding interactions can induce a shift in the emission of the iridium complex from green to blue without the need to alter the ligand structure around the metal center, while simultaneously increasing the photoluminescence quantum yield in solution. The association constant for this host-guest interaction was determined to be Ka = 4.3 × 103 M-1 in a solution of 2% dimethyl sulfoxide in chloroform by UV-vis titration analysis and the impact of the hydrogen bonding interaction further probed by photoluminescence, electrochemical, and computational methods. Our findings suggest that directed self-assemblies are an effective approach to influencing emission properties of phosphorescent iridium(III) complexes.

9.
Inorg Chem ; 56(8): 4623-4635, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28375011

RESUMEN

The enhancement of donor strength of ortho-functionalized triarylphosphanes is shown to occur via different mechanisms for O- and N-donor substituents, with internal solvation of the phosphorus center observed for N donors. Nevertheless, the steric congestion about the P center is shown to significantly oppose the increase in donor ability, leading to donation weaker than that expected. A series of mono- and bis-aryl-substituted Ar3PI2 adducts (Ph3-n(o-OMe-C6H4)nPI2, Ph3-n(o-NMe2-C6H4)nPI2, Ph3-n(o-CH2NMe2-C6H4)nPI2 (n = 1, 2)) have been synthesized via the 1:1 reaction of donor-functionalized phosphanes with diiodine. These soft Lewis acid/base adducts exhibit apparent internal solvation of the donor phosphorus by the pendant donor moieties, giving rise to five- or six-coordinate phosphorus atoms acting as both Lewis base and Lewis acid; the first neutral six-coordinate simultaneous P(III) Lewis acid and Lewis base adduct is reported. Single-crystal X-ray diffraction studies reveal unexpectedly weak donor strength for one of the phosphanes, indicating significant steric hindrance as a consequence of internal solvation. Crystallographic interrogation of the corresponding iodophosphonium salts [Ar3PI]X (X = I3, BArF) shows that the cationic complexes experience a still greater influence of the steric bulk of the donor moieties than their neutral precursors. The steric and electronic contributions to bonding have been analyzed through computational studies, determining the factors governing the basicity of these donor-functionalized phosphanes, and show that enhancement of P-centered donor strength occurs by conjugation of lone pairs through the arene rings for oxygen substituents and via internal solvation for the nitrogen donors.

10.
Angew Chem Int Ed Engl ; 54(19): 5688-92, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25782610

RESUMEN

The direct C(sp(2) )-C(sp(3) ) cross-coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp(2) )-C(sp(3) ) cross-coupling showed excellent functional-group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp(2) )-C(sp(3) ) bonds.

11.
Angew Chem Int Ed Engl ; 53(42): 11306-9, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25195917

RESUMEN

N-methylacridinium salts are Lewis acids with high hydride ion affinity but low oxophilicity. The cation forms a Lewis adduct with 4-(N,N-dimethylamino)pyridine but a frustrated Lewis pair (FLP) with the weaker base 2,6-lutidine which activates H2, even in the presence of H2O. Anion effects dominate reactivity, with both solubility and rate of H2 cleavage showing marked anion dependency. With the optimal anion, a N-methylacridinium salt catalyzes the reductive transfer hydrogenation and hydrosilylation of aldimines through amine-boranes and silanes, respectively. Furthermore, the same salt is active for the catalytic dehydrosilylation of alcohols (primary, secondary, tertiary, and ArOH) by silanes with no observable over-reduction to the alkanes.

12.
Chem Commun (Camb) ; 60(7): 874-877, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38164828

RESUMEN

[Ni(IMes)2] reacts with chloroboranes via oxidative addition to form rare unsupported Ni-boryls. In contrast, the oxidative addition of hydridoboranes is not observed and products from competing reaction pathways are identified. Computational studies relate these differences to the mechanism of oxidative addition: B-Cl activation proceeds via nucleophilic displacement of Cl-, while B-H activation would entail high energy concerted bond cleavage.

13.
Chempluschem ; : e202400055, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713896

RESUMEN

The conformational preferences of N-((6-methylpyridin-2-yl)carbamothioyl)benzamide were studied in solution, the gas phase and the solid state via a combination of NMR, density functional theory (DFT) and single crystal X-ray techniques. This acyl thiourea derivative can adopt two classes of low energy conformation, each stabilized by a different 6-membered intramolecular hydrogen bond (IHB) pseudoring. Analysis in different solvents revealed that the conformational preference of this molecule is polarity dependent, with increasingly polar environments yielding a higher proportion of the minor conformer containing an NH⋅⋅⋅N IHB. The calculated barrier to interconversion is consistent with dynamic behaviour at room temperature, despite the propensity of 6-membered IHB pseudorings to be static. This work demonstrates that introducing competitive IHB pathways can render static IHBs more dynamic and that such systems could have potential as chameleons in drug design.

14.
Chemistry ; 19(7): 2462-6, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23296951

RESUMEN

A range of frustrated Lewis pairs (FLPs) containing borenium cations have been synthesised. The catechol (Cat)-ligated borenium cation [CatB(PtBu(3))](+) has a lower hydride-ion affinity (HIA) than B(C(6)F(5))(3). This resulted in H(2) activation being energetically unfavourable in a FLP with the strong base PtBu(3). However, ligand disproportionation of CatBH(PtBu(3)) at 100 °C enabled trapping of H(2) activation products. DFT calculations at the M06-2X/6-311G(d,p)/PCM (CH(2)Cl(2)) level revealed that replacing catechol with chlorides significantly increases the chloride-ion affinity (CIA) and HIA. Dichloro-borenium cations, [Cl(2)B(amine)](+), were calculated to have considerably greater HIA than B(C(6)F(5))(3). Control reactions confirmed that the HIA calculations can be used to successfully predict hydride-transfer reactivity between borenium cations and neutral boranes. The borenium cations [Y(Cl)B(2,6-lutidine)](+) (Y = Cl or Ph) form FLPs with P(mesityl)(3) that undergo slow deprotonation of an ortho-methyl of lutidine at 20 °C to form the four-membered boracycles [(CH(2){NC(5)H(3)Me})B(Cl)Y] and [HPMes(3)](+). When equimolar [Y(Cl)B(2,6-lutidine)](+)/P(mesityl)(3) was heated under H(2) (4 atm), heterolytic cleavage of dihydrogen was competitive with boracycle formation.

15.
Chemistry ; 19(19): 6094-107, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23471708

RESUMEN

Treatment of the thioether-substituted secondary phosphanes R(2)PH(C6H4-2-SR(1)) [R(2) = (Me3Si)2CH, R(1) = Me (1PH), iPr (2PH), Ph (3PH); R(2) = tBu, R(1) = Me (4PH); R(2) = Ph, R(1) = Me (5PH)] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF (1-5Pa) and tmeda (1-5Pb) adducts. Solid-state structures were obtained for the adducts [R(2)P(C6H4-2-SR(1))]Li(L)n [R(2) = (Me3Si)2CH, R(1) = nPr, (L)n = tmeda (2Pb); R(2) = (Me3Si)2CH, R(1) = Ph, (L)n = tmeda (3Pb); R(2) = Ph, R(1) = Me, (L)n = (THF)1.33 (5Pa); R(2) = Ph, R(1) = Me, (L)n = ([12]crown-4)2 (5Pc)]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4-2-SMe)]M(THF)n [M = Na (1Pd), K (1Pe)]. With the exception of 2Pa and 2Pb, photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R(2)P(R(1))(C6H4-2-S)]M(L)n [M = Li, L = THF (1Sa, 3Sa-5Sa); M = Li, L = tmeda (1Sb, 3Sb-5Sb); M = Na, L = THF (1Sd); M = K, L = THF (1Se)] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4-2-S)]Li]6 ((3S)6) and [[tBuP(Me)(C6H4-2-S)]Li]8 ((4S)8), respectively. A mechanistic study reveals that the phosphanide-thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa/2Pb, competing intramolecular ß-deprotonation of the n-propyl substituent results in the elimination of propene and the formation of the phosphanide-thiolate dianion [{(Me3Si)2CH}P(C6H4-2-S)](2-).

16.
Angew Chem Int Ed Engl ; 52(29): 7518-22, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23740843

RESUMEN

Hail boration! 2-Dimethylaminopyridine-ligated dihaloborocations [X2B(2-DMAP)](+) with a strained four-membered boracycle were used for the haloboration of terminal and dialkyl internal alkynes (see scheme). Esterification then provided vinyl boronate esters as useful precursors to tetrasubstituted alkenes. Following mechanistic studies, the scope of the haloboration was expanded simply by variation of the amine. Pin = 2,3-dimethyl-2,3-butanedioxy.

17.
Chem Sci ; 13(33): 9761-9773, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091903

RESUMEN

The rise of antimicrobial resistance remains one of the greatest global health threats facing humanity. Furthermore, the development of novel antibiotics has all but ground to a halt due to a collision of intersectional pressures. Herein we determine the antimicrobial efficacy for 14 structurally related supramolecular self-associating amphiphiles against clinically relevant Gram-positive methicillin resistant Staphylococcus aureus and Gram-negative Escherichia coli. We establish the ability of these agents to selectively target phospholipid membranes of differing compositions, through a combination of computational host:guest complex formation simulations, synthetic vesicle lysis, adhesion and membrane fluidity experiments, alongside our novel 1H NMR CPMG nanodisc coordination assays, to verify a potential mode of action for this class of compounds and enable the production of evermore effective next-generation antimicrobial agents. Finally, we select a 7-compound subset, showing two lead compounds to exhibit 'druggable' profiles through completion of a variety of in vivo and in vitro DMPK studies.

18.
Inorg Chem ; 50(8): 3651-61, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21425798

RESUMEN

Theoretical calculations reveal that the model phosphagermylenes {(Me)P(C6H4-2-CH2NMe2)}GeX [X = F (1F), Cl (1Cl), Br (1Br), H (1H), Me (1Me)], which are chiral at both the phosphorus and pyramidal germanium(II) centers, may be subject to multiple inversion pathways which result in interconversion between enantiomers/diastereomers. Inversion via a classical vertex-inversion process (through a trigonal planar transition state) is observed for the phosphorus center in all compounds and for the germanium center in 1H, although this latter process has a very high barrier to inversion (221.6 kJ mol⁻¹); the barriers to vertex-inversion at phosphorus increase with decreasing electronegativity of the substituent X. Transition states corresponding to edge-inversion at germanium (via a T-shaped transition state) were located for all five compounds; for each compound two different arrangements of the substituent atoms [N and X axial (1X(N-X)) or P and X axial (1X(P-X))] are possible, and two distinct transition states were located for each of these arrangements. In the first of these (1X(N-X)(Planar) and 1X(P-X)(Planar)), inversion at germanium is accompanied by simultaneous planarization at phosphorus; these transition states are stabilized by pπ-pπ interactions between the phosphorus lone pair and the vacant p(z)-orbital at germanium. In the alternative transition states (1X(N-X)(Folded) and 1X(P-X)(Folded)), the phosphorus atoms remain pyramidal and inversion at germanium is accompanied by folding of the phosphide ligand such that there are short contacts between germanium and one of the ipso-carbon atoms of the aromatic ring. These transition states appear to be stabilized by donation of electron density from the π-system of the aromatic rings into the vacant p(z)-orbital at germanium. The barriers to inversion via 1X(P-X)(Planar) and 1X(P-X)(Folded) are rather high, whereas the barriers to inversion via 1X(N-X)(Planar) and 1X(N-X)(Folded) are similar to those for inversion at phosphorus, clearly suggesting that the most important factor in stabilizing these transition states is the σ-withdrawing ability of the substituents, rather than π-donation of lone pairs or donation of π-electron density from the aromatic rings into the vacant p(z)-orbital at germanium.

19.
Chem Sci ; 13(1): 149-158, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059163

RESUMEN

A family of substituted 1,2,4-benzothiadiazine 1-chlorides have been prepared by treatment of N-arylamidines in neat thionyl chloride at reflux. The S(iv) 1-chlorides are readily reduced under mild conditions to persistent 1,2,4-benzothiadiazinyl radicals which have been characterised by EPR spectroscopy and cyclic voltammetry. Crystallographic studies on isolated radicals indicate that the radicals dimerise via pancake bonding in the solid-state, resulting in spin-pairing and net diamagnetism.

20.
Inorg Chem ; 49(10): 4698-707, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20392059

RESUMEN

The reaction between PhPCl(2) and 1 equiv of RLi, followed by in situ reduction with LiAlH(4) and an aqueous workup yields the secondary phosphane PhRPH [R = (Me(3)Si)(2)CH]. Treatment of PhRPH with n-BuLi in diethyl ether generates the lithium phosphanide (RPhP)Li(Et(2)O)(n) [15(Et(2)O)], which may be crystallized as the tetrahydrofuran (THF) adduct (RPhP)Li(THF)(3) [15(THF)]. Compound 15(Et(2)O) reacts with 1 equiv of either NaO-tBu or KO-tBu to give the corresponding sodium and potassium phosphanides (RPhP)Na(Et(2)O)(n) (16) and (RPhP)K(Et(2)O)(n) (17), which may be crystallized as the amine adducts [(RPhP)Na(tmeda)](2) [16(tmeda)] and [(RPhP)K(pmdeta)](2) [17(pmdeta)], respectively. The reaction between 2 equiv of 17 and GeCl(2)(1,4-dioxane) gives the dimeric compound [(RPhP)(2)Ge](2).Et(2)O (18.Et(2)O). In contrast, the reaction between 2 equiv of 15 and SnCl(2) preferentially gives the ate complex (RPhP)(3)SnLi(THF) (19) in low yield; 19 is obtained in quantitative yield from the reaction between SnCl(2) and 3 equiv of 15. Crystallization of 19 from n-hexane/THF yields the separated ion pair complex [(RPhP)(3)Sn][Li(THF)(4)] (19a); exposure of 19a to vacuum for short periods leads to complete conversion to 19. Treatment of GeCl(2)(1,4-dioxane) with 3 equiv of 15 yields the contact ion pair (RPhP)(3)GeLi(THF) (20), after crystallization from n-hexane/THF. Compounds 15(THF), 16(tmeda), 17(pmdeta), 18.Et(2)O, 19a, and 20 have been characterized by elemental analyses, multielement NMR spectroscopy, and X-ray crystallography. While 15(THF) is monomeric, both 16(tmeda) and 17(pmdeta) are dimeric in the solid state. The diphosphagermylene 18.Et(2)O adopts a dimeric structure in the solid state with a syn,syn-arrangement of the phosphanide ligands, and this structure appears to be preserved in solution. The ate complex 19a crystallizes as a separated ion pair, whereas the analogous ate complex 20 crystallizes as a discrete molecular species. The structures of 19 and 20 are retained in non-donor solvents, while dissolution in THF yields the separated ion pairs 19a and [(RPhP)(3)Ge][Li(THF)(4)] (20a).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA