Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(11): e22001, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674320

RESUMEN

The pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial-to-mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non-transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple-negative breast cancer cells (MDA-MB-231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA-MB-231 and MCF10A cells and without changes in E-cadherin. Induction of EMT in MCF10A cells, by treatment with WNT-5a and TGF-ß1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT-5a/TGF-ß1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas/fisiología , Ribonucleoproteína Nuclear Pequeña U4-U6/fisiología , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
2.
Cancer Immunol Res ; 5(12): 1086-1097, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29054890

RESUMEN

Natural killer T (NKT) cells are glycolipid-reactive lymphocytes that promote cancer control. In previous studies, NKT-cell activation improved survival and antitumor immunity in a postsurgical mouse model of metastatic breast cancer. Herein, we investigated whether NKT-cell activation could be combined with chemotherapeutic agents to augment therapeutic outcomes. Gemcitabine and cyclophosphamide analogues enhanced the potential immunogenicity of 4T1 mammary carcinoma cells by increasing the expression of antigen-presenting molecules (MHC-I, MHC-II, and CD1d) and promoting exposure or release of immunogenic cell death markers (calreticulin, HMGB1, and ATP). In 4T1 primary tumor and postsurgical metastasis models, BALB/c mice were treated with cyclophosphamide or gemcitabine. NKT cells were then activated by transfer of dendritic cells loaded with the glycolipid antigen α-galactosylceramide (α-GalCer). Chemotherapeutic treatments did not impact NKT-cell activation but enhanced recruitment into primary tumors. Cyclophosphamide, gemcitabine, or α-GalCer-loaded dendritic cell monotherapies decreased tumor growth in the primary tumor model and reduced metastatic burden and prolonged survival in the metastasis model. Combining chemotherapeutics with NKT-cell activation therapy significantly enhanced survival, with surviving mice exhibiting attenuated tumor growth following a second tumor challenge. The frequency of myeloid-derived suppressor cells was reduced by gemcitabine, cyclophosphamide, or α-GalCer-loaded dendritic cell treatments; cyclophosphamide also reduced the frequency of regulatory T cells. Individual treatments increased immune cell activation, cytokine polarization, and cytotoxic responses, although these readouts were not enhanced further by combining therapies. These findings demonstrate that NKT-cell activation therapy can be combined with gemcitabine or cyclophosphamide to target tumor burden and enhance protection against tumor recurrence. Cancer Immunol Res; 5(12); 1086-97. ©2017 AACR.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Inmunoterapia , Células T Asesinas Naturales/inmunología , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunomodulación/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Células T Asesinas Naturales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA