Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Cancer ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39001563

RESUMEN

Despite advancements in treating cutaneous melanoma, patients with acral and mucosal (A/M) melanomas still have limited therapeutic options and poor prognoses. We analyzed 156 melanomas (101 cutaneous, 28 acral, and 27 mucosal) using the Foundation One cancer-gene specific clinical testing platform and identified new, potentially targetable genomic alterations (GAs) in specific anatomic sites of A/M melanomas. Using novel pre-clinical models of A/M melanoma, we demonstrate that several GAs and corresponding oncogenic pathways associated with cutaneous melanomas are similarly targetable in A/M melanomas. Other alterations, including MYC and CRKL amplifications, were unique to A/M melanomas and susceptible to indirect targeting using the BRD4 inhibitor JQ1 or Src/ABL inhibitor dasatinib, respectively. We further identified new, actionable A/M-specific alterations, including an inactivating NF2 fusion in a mucosal melanoma responsive to dasatinib in vivo. Our study highlights new molecular differences between cutaneous and A/M melanomas, and across different anatomic sites within A/M, which may change clinical testing and treatment paradigms for these rare melanomas.

2.
Mol Cell ; 61(5): 760-773, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942679

RESUMEN

MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNA-protein complex (microRNP) that lacks the microRNP repressor, GW182. Their mechanism in these conditions of decreased mTOR signaling, and therefore reduced canonical (cap-and-poly(A)-tail-mediated) translation, remains undiscovered. Our data reveal that mTOR inhibition in human THP1 cells enables microRNA-mediated activation. Activation requires shortened/no poly(A)-tail targets; polyadenylated mRNAs are partially activated upon PAIP2 overexpression, which interferes with poly(A)-bound PABP, precluding PABP-enhanced microRNA-mediated inhibition and canonical translation. Consistently, inhibition of PARN deadenylase prevents activation. P97/DAP5, a homolog of canonical translation factor, eIF4G, which lacks PABP- and cap binding complex-interacting domains, is required for activation, and thereby for the oocyte immature state. P97 interacts with 3' UTR-binding FXR1a-associated microRNPs and with PARN, which binds mRNA 5' caps, forming a specialized complex to translate recruited mRNAs in these altered canonical translation conditions.


Asunto(s)
Senescencia Celular , MicroARNs/metabolismo , Oocitos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Regiones no Traducidas 3' , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Línea Celular , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , MicroARNs/genética , Proteómica/métodos , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleoproteínas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transfección , Xenopus laevis
3.
Artículo en Inglés | MEDLINE | ID: mdl-34476332

RESUMEN

PURPOSE: MET exon 14 (METex14) skipping alterations are oncogenic drivers in non-small-cell lung cancer (NSCLC). We present a comprehensive overview of METex14 samples from 1,592 patients with NSCLC, associated clinicogenomic characteristics, potential mechanisms of acquired resistance, treatment patterns, and outcomes to MET inhibitors. METHODS: Hybrid capture-based comprehensive genomic profiling (CGP) was performed on samples from 69,219 patients with NSCLC. For treatment patterns and outcomes analysis, patients with advanced METex14-altered NSCLC were selected from the Flatiron Health-Foundation Medicine clinicogenomic database, a nationwide deidentified electronic health record-derived database linked to Foundation Medicine CGP for patients treated between January 2011 and March 2020. RESULTS: A total of 1,592 patients with NSCLC (2.3%) were identified with 1,599 METex14 alterations spanning multiple functional sites (1,458 of 60,244 tissue samples and 134 of 8,975 liquid samples). Low tumor mutational burden and high programmed death ligand 1 expression were enriched in METex14-altered samples. MDM2, CDK4, and MET coamplifications and TP53 mutations were present in 34%, 19%, 11%, and 42% of tissue samples, respectively. Comparing tissue and liquid cohorts, coalteration frequency and acquired resistance mechanisms, including multiple MET mutations, EGFR, ERBB2, KRAS, and PI3K pathway alterations, were generally similar. Positive percent agreement with the tissue was 100% for METex14 pairs collected within 1 year (n = 7). Treatment patterns showed increasing adoption of MET inhibitors in METex14-altered NSCLC after receipt of CGP results; the real-world response rate to MET inhibitors was 45%, and time to treatment discontinuation was 4.4 months. CONCLUSION: Diverse METex14 alterations were present in 2%-3% of NSCLC cases. Tissue and liquid comparisons showed high concordance and similar coalteration profiles. Characterizing common co-occurring alterations and immunotherapy biomarkers, including those present before or acquired after treatment, may be critical for predicting responses to MET inhibitors and informing rational combination strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Proto-Oncogénicas c-met/genética , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas Proto-Oncogénicas c-met/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA