Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402120, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045899

RESUMEN

The structural dynamics involved in the mechanical flexibility of molecular crystals and the internal stress in such flexible materials remain obscure. Here, the study reports an elastically bending lipidated molecular crystal that shows systematic shifts in characteristic vibrational frequencies across the bent crystal region - revealing the nature of structural changes during bending and the local internal stress distribution. The blueshifts in the bond stretching modes (such as C═O and C-H modes) in the inner arc region and redshifts in the outer arc region of the bent crystals observed via micro-Raman mapping are counterintuitive to the bending models based on intermolecular hydrogen bonds. Correlating these shifts with the trends observed from high-pressure Raman studies on the crystal reveals the local stress difference between the inner arc and outer arc regions of the bent crystal to be ≈2 GPa, more than an order of magnitude higher than the previously proposed value in elastically bending crystals. High local internal stress can have direct ramifications on the properties of molecular piezoelectric energy harvesters, actuators, semiconductors, and flexible optoelectronic materials.

2.
Angew Chem Int Ed Engl ; 63(1): e202315572, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985377

RESUMEN

Through coordination-driven self-assembly, aesthetically captivating structures can be formed by tuning the length or flexibility of various components. The self-assembly of an elongated rigid terphenyl-based tetra-pyridyl ligand (L1) with a cis-Pd(II) acceptor produces an [M12 L16 ]24+ triangular orthobicupola structure (1). When flexibility is introduced into the ligand by the incorporation of a -CH2 - group between the dipyridylamine and terphenyl rings in the ligand (L2), anunique [M8 L24 ]16+ water-soluble 'intertwined cubic structure' (2) results. The inherent flexibility of ligand L2 might be the key factor behind the formation of the thermodynamically stable and 'intertwined cubic structure' in this scenario. This research showcases the ability to design and fabricate novel, topologically distinctive molecular structures by a straightforward and efficient approach.

3.
Angew Chem Int Ed Engl ; 63(4): e202313892, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38012094

RESUMEN

Embracing complexity in design, metallo-supramolecular self-assembly presents an opportunity for fabricating materials of economic significance. The array of accessible supramolecules is alluring, along with favourable energy requirements. Implementation is hampered by an inability to efficiently characterise complex mixtures. The stoichiometry, size, shape, guest binding properties and reactivity of individual components and combinations thereof are inherently challenging to resolve. A large combinatorial library of four transition metals (Fe, Cu, Ni and Zn), and six ß-diketonate ligands at different molar ratios and pH was robotically prepared and directly analysed over multiple timepoints with electrospray ionisation travelling wave ion mobility-mass spectrometry. The dataset was parsed for self-assembling activity without first attempting to structurally assign individual species. Self-assembling systems were readily categorised without manual data-handling, allowing efficient screening of self-assembly activity. This workflow clarifies solution phase supramolecular assembly processes without manual, bottom-up processing. The complex behaviour of the self-assembling systems was reduced to simpler qualities, which could be automatically processed.

4.
J Am Chem Soc ; 145(23): 12475-12486, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37267593

RESUMEN

Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain. The oxidation states and valency ranges within the p-block provide a tremendous wealth of structures with various chemical properties. Such chemical diversity─when implemented in molecular machines─could become a transformative force in the field. Within this context, we have rationally designed a series of NH-bridged acyclic dimeric cyclodiphosphazane species, [(µ-NH){PE(µ-NtBu)2PE(NHtBu)}2] (E = O and S), bis-PV2N2, displaying bimodal bifurcated R21(8) and trifurcated R31(8,8) hydrogen bonding motifs. The reported species reversibly switch their topological arrangement in the presence and absence of anions. Our results underscore these species as versatile building blocks for molecular machines and switches, as well as supramolecular chemistry and crystal engineering based on cyclophosphazane frameworks.

5.
Small ; 19(25): e2207431, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932939

RESUMEN

Molecular crystals displaying elastic flexibility have important applications in the fields of optoelectronics and nanophotonic technologies. Understanding the mechanisms by which these materials bend is critical to the design of future materials incorporating these properties. Based on the known elastic properties of bis(acetylacetonato)copper(II), a series of 14 aliphatic derivatives are synthesized and crystallized. All those which grew in a needle morphology display noticeable elasticity, with 1D chains of π-stacked molecules parallel to the long metric length of the crystal a consistent crystallographic feature. Crystallographic mapping is used to measure the mechanism of elasticity at an atomic-scale. Symmetric derivatives with ethyl and propyl side chains are found to have different mechanisms of elasticity, which are further distinguished from the previously reported mechanism of bis(acetylacetonato)copper(II). While crystals of bis(acetylacetonato)copper(II) are known to bend elastically via a molecular rotation mechanism, the elasticity of the compounds presented is facilitated by expansion of their π-stacking interactions.

6.
Small ; 19(12): e2206169, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587988

RESUMEN

Organic materials are promising candidates for the development of efficient sensors for many medicinal and materials science applications. Single crystals of a small molecule, 4-trifluoromethyl phenyl isothiocyanate (4CFNCS), exhibit plastic deformation when bent, twisted, or coiled. Synchrotron micro-focus X-ray diffraction mapping of the bent region of the crystal confirms the mechanism of deformation. The crystals are incorporated into a flexible piezoresistive sensor using a composite constituting PEDOT: PSS/4CFNCS, which shows an impressive performance at high-pressure ranges (sensitivity 0.08 kPa-1 above 44 kPa).

7.
Inorg Chem ; 62(19): 7434-7445, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37134276

RESUMEN

Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 µL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 µM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.

8.
Inorg Chem ; 62(38): 15719-15735, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37691232

RESUMEN

Spin crossover (SCO) complexes can reversibly switch between low spin (LS) and high spin (HS) states, affording possible applications in sensing, displays, and molecular electronics. Dinuclear SCO complexes with access to [LS-LS], [LS-HS], and [HS-HS] states may offer increased levels of functionality. The nature of the SCO interconversion in dinuclear complexes is influenced by the local electronic environment. We report the synthesis and characterization of [{FeIII(tpa)}2spiro](PF6)2 (1), [{FeIII(tpa)}2Br4spiro](PF6)2 (2), and [{FeIII(tpa)}2thea](PF6)2 (3) (tpa = tris(2-pyridylmethyl)amine, spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-5,5',6,6'-tetraol, Br4spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-4,4',7,7'-tetrabromo-5,5',6,6'-tetraol, theaH4 = 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene), utilizing non-conjugated bis(catecholate) bridging ligands. In the solid state, magnetic and structural analysis shows that 1 remains in the [HS-HS] state, while 2 and 3 undergo a partial SCO interconversion upon cooling from room temperature involving the mixed [LS-HS] state. In solution, all complexes undergo SCO from [HS-HS] at room temperature, via [LS-HS] to mixtures including [LS-LS] at 77 K, with the extent of SCO increasing in the order 1 < 2 < 3. Gas phase density functional theory calculations suggest a [LS-LS] ground state for all complexes, with the [LS-HS] and [HS-HS] states successively destabilized. The relative energy separations indicate that ligand field strength increases following spiro4- < Br4spiro4- < thea4-, consistent with solid-state magnetic and EPR behavior. All three complexes show stabilization of the [LS-HS] state in relation to the midpoint energy between [LS-LS] and [HS-HS]. The relative stability of the [LS-HS] state increases with increasing ligand field strength of the bis(catecholate) bridging ligand in the order 1 < 2 < 3. The bromo substituents of Br4spiro4- increase the ligand field strength relative to spiro4-, while the stronger ligand field provided by thea4- arises from extension of the overlapping π-orbital system across the two catecholate units. This study highlights how SCO behavior in dinuclear complexes can be modulated by the bridging ligand, providing useful insights for the design of molecules that can be interconverted between more than two states.

9.
Angew Chem Int Ed Engl ; 62(27): e202302229, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37186056

RESUMEN

Coordination cages can be used for enantio- and regioselective catalysis and for the selective sensing and separation of isomeric guest molecules. Here, stereoisomers of a family of coordination cages are resolved using ultra-high-resolution cyclic ion-mobility mass spectrometry (cIM-MS). The observed ratio of diastereomers is dependent on both the metal ion and counter ion. Moreover, the point groups can be assigned through complementary NMR experiments. This method enables the identification and interrogation of the individual isomers in complex mixtures of cages which cannot be performed in solution. Furthermore, these techniques allow the stability of individual isomers within the mixture to be probed, with the T-symmetric isomers in this case shown to be more robust than the C3 and S4 analogues.

10.
J Am Chem Soc ; 144(16): 7504-7513, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35436087

RESUMEN

Anthracene crude oil is a common source of phenanthrene for its industrial use. The isolation of phenanthrene from this source is a challenging task due to very similar physical properties to its isomer anthracene. We report here a water-soluble Pd(II) molecular boat (MB1) with unusual structural topology that was obtained by assembling a flexible tetrapyridyl donor (L) with a cis-Pd(II) acceptor. The flexible backbone of the boat enabled it to breathe in the presence of a guest optimizing the fit within the cavity. The boat binds phenanthrene more strongly than anthracene, which enabled separation of phenanthrene with an >98% purity from an equimolar mixture of the two isomers using MB1 as an extracting agent. MB1 represents a unique example of a coordination receptor suitable for selective aqueous extraction of phenanthrene from anthracene with reusability of several cycles.


Asunto(s)
Fenantrenos , Navíos , Antracenos/química , Fenantrenos/química , Agua/química
11.
Inorg Chem ; 61(30): 11667-11674, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35862437

RESUMEN

A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.

12.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35442030

RESUMEN

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

13.
Chem Soc Rev ; 50(21): 11725-11740, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528036

RESUMEN

The discovery of molecular single crystals that display interesting elastic behaviour has generated excitement regarding their potential applications as it has upended the common perception of crystals as brittle objects. In order to design new functional materials based on molecular crystals, a comprehensive understanding of how these materials respond to deformation on a molecular-level is required. An introduction to the underlying mechanical theory and how it may be applied to single crystals is provided, along with a comprehensive discussion on how these mechanical properties can be characterised. While this field has already presented a large number of elastically flexible crystals, there is a lack of detailed mechanical characterisation data and some contention regarding the atomic-scale mechanism of elasticity. Due to the discrepancies and contradictions between theories proposed in the literature, it is not yet understood why some crystals are elastic while others shatter under applied force. To dispel ambiguity and guide future research, a set of criteria are proposed to define an elastically flexible crystal, so that these materials may find applications among future technologies.

14.
Angew Chem Int Ed Engl ; 61(7): e202115555, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34897921

RESUMEN

Self-assembled coordination cages and metal-organic frameworks have relied extensively on symmetric ligands in their formation. Here we have prepared a relatively simple system employing an unsymmetric ligand that results in two distinct self-assembled structures, a [Fe2 L3 ]4+ helicate and a [Fe4 L6 ]8+ cage composed of 10 interconverting diastereomers and their enantiomers. We show that the steric profile of the ligand controls the complexity, thermodynamics and kinetics of interconversion of the system.

15.
Chemistry ; 27(16): 5136-5141, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33543525

RESUMEN

Foremost, practical applications of spin-crossover (SCO) materials require control of the nature of the spin-state coupling. In existing SCO materials, there is a single, well-defined dimensionality relevant to the switching behavior. A new material, consisting of 1,2,4-triazole-based trimers coordinated into 1D chains by [Au(CN)2 ]- and spaced by anions and exchangeable guests, underwent SCO defined by elastic coupling across multiple dimensional hierarchies. Detailed structural, vibrational, and theoretical studies conclusively confirmed that intra-trimer coupling was an order of magnitude greater than the intramolecular coupling, which was an order of magnitude greater than intermolecular coupling. As such, a clear hierarchy on the nature of elastic coupling in SCO materials was ascertained for the first time, which is a necessary step for the technological development of molecular switching materials.

16.
Inorg Chem ; 60(6): 3871-3878, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33645211

RESUMEN

We probe, here, a family of 2D Hofmann-type frameworks, [FeII(Pd(CN)4)(bztrzX)2]·nH2O [X·nH2O; X = F, Cl, Br; n = 1 (X = Cl, Br) and 3 (X = F); bztrzX = (E)-1-(2-Xphen-1-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine], with halogen-appended ligands. In all cases, there are two crystallographically distinct FeII sites, ({Fe1-Fe2}), driven by the presence of a range of host-host and host-guest interactions. We find that lattice modification through X variation influences the elastic coupling between the FeII sites, the emergence of ferroelastic or antiferroelastic interactions between these sites, and the relative spin-state stabilization/destabilization at each site. In Cl·H2O, the FeII sites show strong elastic coupling, as evidenced by both FeII sites undergoing a spin transition in a single cooperative step, as driven by the volume strain over the high-spin (HS)-to-low-spin (LS) transition. The FeII sites in F·3H2O are also elastically coupled; however, the change of the X atom characteristics and increased guest molecules in the pores result in an antiferroelastic interaction characteristic between Fe1 and Fe2 and a resultant two-step spin-state transition. The change of the X atom to Br in Br·H2O results in the FeII sites being decoupled due to halogen atom steric bulk, resulting in the independent spin-state transition of Fe1 and Fe2 sites and a two-step spin-state transition pathway. Uniquely, all three possible spin-state transition pathways of a two-site switching system are observed in this family [(1) {HS-HS} ↔ {HS-LS} ↔ {LS-LS} for Br·H2O, (2) {HS-HS} ↔ {LS-HS} ↔ {LS-LS} for F·3H2O, and (3) {HS-HS} ↔ {LS-LS} for Cl·H2O for {Fe1-Fe2}]. Overall, these findings broadly support recent theoretical models but highlight that additional structural and topological complexities are needed to form a holistic picture of the drivers of elastic frustration.

17.
Inorg Chem ; 60(9): 6731-6738, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33847127

RESUMEN

A spin-crossover (SCO) active dinuclear Fe(II) triple helicate of the form [Fe2L3]4+ was combined with additional supramolecular components in order to manipulate the interhelical separation and steric congestion and to study the magneto-structural effects on the ensuing composite materials. A more separated array of SCO units produced more extensive spin-transitions, while a tightly arranged lattice environment stabilized the low-spin state. This study highlights the important interplay between crystal packing, intermolecualr interactions, and the magentic behavior of SCO materials.

18.
Inorg Chem ; 60(13): 9673-9679, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34114797

RESUMEN

A range of morphologically distinct metallosupramolecular Cu(II) and Pd(II) complexes has been constructed, based on the tritopic ligand 1,1',1″-(benzene-1,3,5-triyl)tris(4,4-dimethylpentane-1,3-dione) (H3L). By control of the reaction conditions, it is possible to generate distinct coordination assemblies possessing either macrocyclic or polymeric structures and more importantly distinct activity in catalysis of the Suzuki-Miyaura cross-coupling.

19.
Mar Drugs ; 19(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34940679

RESUMEN

Extracts of the mantle and viscera of the Indo-Pacific nudibranchs Goniobranchus aureopurpureus and Goniobranchus sp. 1 afforded 11 new diterpenoids (1-11), all of which possess a tetracyclic spongian-16-one scaffold with extensive oxidation at C-6, C-7, C-11, C-12, C-13, and/or C-20. The structures and relative configuration were investigated by NMR experiments, while X-ray crystallography provided the absolute configuration of 1, including a 2'S configuration for the 2-methylbutanoate substituent located at C-7. Dissection of animal tissue revealed that the mantle and viscera tissues differed in their metabolite composition with diterpenes 1-11 present in the mantle tissue of the two nudibranch species.


Asunto(s)
Diterpenos , Gastrópodos , Animales , Organismos Acuáticos , Cristalografía por Rayos X , Diterpenos/química , Gastrópodos/anatomía & histología , Nueva Gales del Sur
20.
Inorg Chem ; 59(20): 15454-15459, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32997933

RESUMEN

A two-dimensional molecular square (MC) was obtained by the self-assembly of a bis(tetrazole) linker, 4,4'-bis(1H-tetrazol-5-yl)-1,1'-biphenyl (H2L1), with a square-planar metal acceptor M [M = (tmeda)Pd(NO3)2, where tmeda = N,N,N',N'-tetramethylethane-1,2-diamine] in dimethyl sulfoxide (DMSO) followed by crystallization. The uncommon 2,3-binding mode through N atoms of the tetrazole rings in this assembly leads to the formation of an octanuclear molecular square. The molecular square MC [Pd8(L1)4(NO3)8] is unstable in DMSO and slowly converts to a dynamic mixture of a 3D tetrahedral cage T1 [Pd12(L1)6(NO3)12] and the macrocycle MC. A tetrahedral cage (T1) is formed by the usual 1,3-binding mode of the tetrazole rings. However, self-assembly of the T1 [Pd12(L1)6(PF6)12] was possible to access in the pure form in a less polar solvent like acetonitrile. The pure T1 [Pd12(L1)6(PF6)12] also converts to a mixture of T1 and MC in DMSO. Interestingly, when a tris(tetrazole) linker, tris(4-(1H-tetrazol-5-yl)phenyl)amine (H3L2), was treated with the acceptor M, it produced a tetrahedral nanocage T2 [Pd12(L2)4(NO3)12] through 1,3-binding mode of the tetrazole rings without any trace of an octahedral cage through 2,3-binding mode of the tetrazole moieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA