Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916908

RESUMEN

Understanding plant responses to individual stresses does not mean that we understand real world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multi-omics description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among five genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomics and metabolomics profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a 'universal' stress response. The main effect of the WxN interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to WxN interactions are often accession-specific. Multi-omics analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intra-specific diversity in our descriptions of plant stress response places our findings in perspective.

2.
Plant Cell ; 35(5): 1429-1454, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36752317

RESUMEN

Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nitratos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo
3.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38267257

RESUMEN

Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.


Asunto(s)
Percepción del Tacto , Vestíbulo del Laberinto , Humanos , Masculino , Femenino , Percepción Visual , Tecnología Háptica , Cognición , Percepción Espacial
4.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
5.
Plant Physiol ; 192(4): 2943-2957, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37042394

RESUMEN

In eukaryotes, a target of rapamycin (TOR) is a well-conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge of the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.


Asunto(s)
Compuestos de Amonio , Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Glutamina/metabolismo , Compuestos de Amonio/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Sirolimus/farmacología , Sirolimus/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantas/metabolismo
6.
Plant Cell Environ ; 46(3): 901-917, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36583533

RESUMEN

During leaf senescence, nitrogen is remobilized and carbon backbones are replenished by amino acid catabolism, with many of the key reactions occurring in mitochondria. The intermediate Δ1 -pyrroline-5-carboxylate (P5C) is common to some catabolic pathways, thus linking the metabolism of several amino acids, including proline and arginine. Specifically, mitochondrial proline catabolism involves sequential action of proline dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH) to produce P5C and then glutamate. Arginine catabolism produces urea and ornithine, the latter in the presence of α-ketoglutarate being converted by ornithine δ-aminotransferase (OAT) into P5C and glutamate. Metabolic changes during dark-induced leaf senescence (DIS) were studied in Arabidopsis thaliana leaves of Col-0 and in prodh1prodh2, p5cdh and oat mutants. Progression of DIS was followed by measuring chlorophyll and proline contents for 5 days. Metabolomic profiling of 116 compounds revealed similar profiles of Col-0 and oat metabolism, distinct from prodh1prodh2 and p5cdh metabolism. Metabolic dynamics were accelerated in p5cdh by 1 day. Notably, more P5C and proline accumulated in p5cdh than in prodh1prodh2. ProDH1 enzymatic activity and protein amount were significantly down-regulated in p5cdh mutant at Day 4 of DIS. Mitochondrial P5C levels appeared critical in determining the flow through interconnected amino acid remobilization pathways to sustain senescence.


Asunto(s)
Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Arginina/metabolismo , Glutamatos/metabolismo , Ornitina/metabolismo , Prolina/metabolismo , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo
7.
J Exp Bot ; 74(5): 1489-1500, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36528796

RESUMEN

Proline is an amino acid that is degraded in the mitochondria by the sequential action of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) to form glutamate. We investigated the phenotypes of Arabidopsis wild-type plants, the knockout prodh1 prodh2 double-mutant, and knockout p5cdh allelic mutants grown at low and high nitrate supplies. Surprisingly, only p5cdh presented lower seed yield and produced lighter seeds. Analyses of elements in above-ground organs revealed lower C concentrations in the p5cdh seeds. Determination of C, N, and dry matter partitioning among the above-ground organs revealed a major defect in stem-to-seed resource allocations in this mutant. Again surprisingly, defects in C, N, and biomass allocation to seeds dramatically increased in high-N conditions. 15N-labelling consistently confirmed the defect in N remobilization from the rosette and stem to seeds in p5cdh. Consequently, the p5cdh mutants produced morphologically abnormal, C-depleted seeds that displayed very low germination rates. The most striking result was the strong amplification of the N-remobilization defects in p5cdh under high nitrate supply, and interestingly this phenotype was not observed in the prodh1 prodh2 double-mutant irrespective of nitrate supply. This study reveals an essential role of P5CDH in carbon and nitrogen remobilization for reserve accumulation during seed development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Semillas
8.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895051

RESUMEN

The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.


Asunto(s)
Arabidopsis , Basidiomycota , Arabidopsis/metabolismo , Plantones/metabolismo , Endófitos/metabolismo , Nitrógeno/metabolismo , Basidiomycota/fisiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457046

RESUMEN

DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.


Asunto(s)
Arabidopsis , Erwinia amylovora , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
10.
J Exp Bot ; 72(8): 3044-3060, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33543244

RESUMEN

Shoot branching is a pivotal process during plant growth and development, and is antagonistically orchestrated by auxin and sugars. In contrast to extensive investigations on hormonal regulatory networks, our current knowledge on the role of sugar signalling pathways in bud outgrowth is scarce. Based on a comprehensive stepwise strategy, we investigated the role of glycolysis/the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate pathway (OPPP) in the control of bud outgrowth. We demonstrated that these pathways are necessary for bud outgrowth promotion upon plant decapitation and in response to sugar availability. They are also targets of the antagonistic crosstalk between auxin and sugar availability. The two pathways act synergistically to down-regulate the expression of BRC1, a conserved inhibitor of shoot branching. Using Rosa calluses stably transformed with GFP-fused promoter sequences of RhBRC1 (pRhBRC1), glycolysis/TCA cycle and the OPPP were found to repress the transcriptional activity of pRhBRC1 cooperatively. Glycolysis/TCA cycle- and OPPP-dependent regulations involve the -1973/-1611 bp and -1206/-709 bp regions of pRhBRC1, respectively. Our findings indicate that glycolysis/TCA cycle and the OPPP are integrative parts of shoot branching control and can link endogenous factors to the developmental programme of bud outgrowth, likely through two distinct mechanisms.


Asunto(s)
Rosa , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Brotes de la Planta , Azúcares
11.
Physiol Plant ; 171(3): 424-434, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33140863

RESUMEN

Esca is a complex grapevine trunk disease caused by wood-rotting ascomycetes and basidiomycetes and leading to several foliar and wood symptoms. Given that the esca expression can be influenced by several environmental, physiological, and genetic factors, foliar symptoms are inconsistent in incidence and prevalence and may appear 1 year but not the following. We have previously reported a clone-dependent expression of the disease in cv Chardonnay. Owing to metabolome analysis, we could discriminate the metabolite fingerprint of green leaves collected on diseased vines of clones 76 and 95. These clone-dependent fingerprints were year-dependent in intensity and nature. The present work was conducted to determine if the clone-dependent disease expression observed is specific to Chardonnay or if it also occurs in another cultivar. A plot located in the Jura vineyard (France) and planted with both 1004 and 1026 clones of Trousseau, a cultivar highly susceptible to esca, was thus selected and studied during 2017 and 2018. A year-dependent variation of the symptoms expression was first observed and a possible relationship with rainfall is hypothesized and discussed. Moreover, a higher percentage of the clone 1026 vines expressed disease, compared to the 1004 ones, suggesting the higher susceptibility of this clone. Finally, metabolomic analyses of the remaining green leaves (i.e, without symptom expression) of partial esca-apoplectic vines allowed us to confirm a clone-dependent metabolic response to the disease. The metabolite fingerprints obtained differed in nature and intensity to those previously reported for Chardonnay and also between years.


Asunto(s)
Vitis , Células Clonales , Metaboloma , Enfermedades de las Plantas , Hojas de la Planta/genética , Vitis/genética
12.
J Neurophysiol ; 123(5): 2037-2063, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292116

RESUMEN

Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.


Asunto(s)
Astronautas , Sistema Nervioso Central/fisiología , Emociones/fisiología , Marte , Desempeño Psicomotor/fisiología , Vuelo Espacial , Vestíbulo del Laberinto/fisiología , Ingravidez , Animales , Humanos , Ingravidez/efectos adversos
13.
Plant Physiol ; 180(2): 1198-1218, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948555

RESUMEN

Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Genómica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Ciclo Celular , Desecación , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación/genética , Oxidación-Reducción , Fotosíntesis , Latencia en las Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal/genética , Transcriptoma/genética
14.
J Exp Bot ; 71(20): 6471-6490, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687580

RESUMEN

Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteómica , Sulfatos/metabolismo
15.
J Exp Bot ; 71(16): 5039-5052, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32386062

RESUMEN

In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.


Asunto(s)
Medicago truncatula , Nódulos de las Raíces de las Plantas , Nitrógeno , Fijación del Nitrógeno , Simbiosis
16.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30753668

RESUMEN

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferasas/genética , Fosfatidilinositol 3-Quinasas , Proteínas de Arabidopsis/metabolismo , Leucina/biosíntesis , Mutación , Organogénesis de las Plantas , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal
17.
J Exp Bot ; 70(21): 6203-6214, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504781

RESUMEN

Leaf senescence is a form of developmentally programmed cell death that allows the remobilization of nutrients and cellular materials from leaves to sink tissues and organs. Among the catabolic reactions that occur upon senescence, little is known about the role of proline catabolism. In this study, the involvement in dark-induced senescence of proline dehydrogenases (ProDHs), which catalyse the first and rate-limiting step of proline oxidation in mitochondria, was investigated using prodh single- and double-mutants with the help of biochemical, proteomic, and metabolomic approaches. The presence of ProDH2 in mitochondria was confirmed by mass spectrometry and immunogold labelling in dark-induced leaves of Arabidopsis. The prodh1 prodh2 mutant exhibited enhanced levels of most tricarboxylic acid cycle intermediates and free amino acids, demonstrating a role of ProDH in mitochondrial metabolism. We also found evidence of the involvement and the importance of ProDH in respiration, with proline as an alternative substrate, and in remobilization of proline during senescence to generate glutamate and energy that can then be exported to sink tissues and organs.


Asunto(s)
Arabidopsis/metabolismo , Oscuridad , Mitocondrias/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Prolina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Respiración de la Célula , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mitocondrias/ultraestructura , Oxidación-Reducción , Consumo de Oxígeno
18.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654520

RESUMEN

The retromer is a multiprotein complex conserved from yeast to humans, which is involved in intracellular protein trafficking and protein recycling. Selection of cargo proteins transported by the retromer depends on the core retromer subunit composed of the three vacuolar protein sorting (VPS) proteins, namely VPS26, VPS29, and VPS35. To gain a better knowledge of the importance of the plant retromer in protein sorting, we carried out a comparative proteomic and metabolomic analysis of Arabidopsis thaliana seeds from the wild-type and the null-retromer mutant vps29. Here, we report that the retromer mutant displays major alterations in the maturation of seed storage proteins and synthesis of lipid reserves, which are accompanied by severely impaired seed vigor and longevity. We also show that the lack of retromer components is counterbalanced by an increase in proteins involved in intracellular trafficking, notably members of the Ras-related proteins in brain (RAB) family proteins. Our study suggests that loss of the retromer stimulates energy metabolism, affects many metabolic pathways, including that of cell wall biogenesis, and triggers an osmotic stress response, underlining the importance of retromer function in seed biology.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Pleiotropía Genética , Metabolómica/métodos , Mutación/genética , Proteómica/métodos , Semillas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético , Ontología de Genes , Germinación , Metaboloma
19.
Plant J ; 91(3): 371-393, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28390103

RESUMEN

Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoterCaMV35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoterNapin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Semillas/enzimología , Semillas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspartatoamoníaco Ligasa/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Floema/enzimología , Floema/genética , Floema/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética
20.
J Exp Bot ; 69(4): 891-903, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-28992054

RESUMEN

Leaf senescence is a long developmental process important for nutrient management and for source to sink remobilization. Constituents of the mesophyll cells are progressively degraded to provide nutrients to the rest of the plant. Up to now, studies on leaf senescence have not paid much attention to the role of the different leaf tissues. In the present study, we dissected leaf laminae from the midvein to perform metabolite profiling. The laminae mesophyll cells are the source of nutrients, and in C3 plants they contain Rubisco as the most important nitrogen storage pool. Veins, rich in vasculature, are the place where all the nutrients are translocated, and sometimes interconverted, before being exported through the phloem or the xylem. The different metabolic changes we observed in laminae and midvein with ageing support the idea that the senescence programme in these two tissues is different. Important accumulations of metabolites in the midvein suggest that nutrient translocations from source leaves to sinks are mainly controlled at this level. Carbon and nitrogen long-distance molecules such as fructose, glucose, aspartate, and asparagine were more abundant in the midvein than in laminae. In contrast, sucrose, glutamate, and aspartate were more abundant in laminae. The concentrations of tricarboxylic acid (TCA) compounds were also lower in the midvein than in laminae. Since nitrogen remobilization increased under low nitrate supply, plants were grown under two nitrate concentrations. The results revealed that the senescence-related differences were mostly similar under low and high nitrate conditions except for some pathways such as the TCA cycle.


Asunto(s)
Brassica napus/metabolismo , Metaboloma , Nitratos/metabolismo , Hojas de la Planta/metabolismo , Envejecimiento , Brassica napus/crecimiento & desarrollo , Metabolómica , Hojas de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA