Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 151(4): 709-723, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141534

RESUMEN

Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.


Asunto(s)
Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Espinas Dendríticas/metabolismo , Sinapsis/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Haploinsuficiencia , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo
2.
PLoS Biol ; 19(11): e3001432, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34813590

RESUMEN

Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3' UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.


Asunto(s)
Homeostasis/genética , MicroARNs/metabolismo , Biosíntesis de Proteínas/genética , Proteolisis , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Polirribosomas/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Exp Brain Res ; 240(1): 289-309, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34739555

RESUMEN

Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3ß inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.


Asunto(s)
Trastorno del Espectro Autista , Proteínas Activadoras de ras GTPasa , Animales , Glucógeno Sintasa Quinasa 3 beta , Ratones , Sinapsis , Transmisión Sináptica
4.
Exp Brain Res ; 240(10): 2525-2567, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36063192

RESUMEN

Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Animales , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/complicaciones , Ratones , Neuronas , Transducción de Señal/genética
5.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142719

RESUMEN

Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Trastornos del Neurodesarrollo , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Epilepsia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Humanos , Trastornos del Neurodesarrollo/genética , Roedores
6.
Neurobiol Learn Mem ; 180: 107415, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33647449

RESUMEN

Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Período Crítico Psicológico , Trastornos del Neurodesarrollo/fisiopatología , Animales , Ansiedad , Trastorno del Espectro Autista/fisiopatología , Diferenciación Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Humanos , Discapacidad Intelectual/fisiopatología , Neurogénesis/fisiología , Neuroglía , Plasticidad Neuronal/fisiología , Conducta Social
7.
Mol Biol Rep ; 47(11): 9225-9234, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33090308

RESUMEN

Exome sequencing is a prominent tool to identify novel and deleterious mutations which could be non-sense, frameshift, and canonical splice-site mutations in a specific gene. De novo mutations in SYNGAP1, which codes for synaptic RAS-GTPase activating the protein, causes Intellectual disability (ID) and Autism Spectrum Disorder (ASD). SYNGAP1 related ASD/ID is one of the rare diseases that are detrimental to the healthy neuronal developmental and disrupts the global development of a child. We report the first SYNGAP1 heterozygous patient from Indian cohort. We report a case of a child of 2-year old with global developmental delay, microcephaly subtle dysmorphism, absence seizures, disrupted sleep, delay in learning a language, and eating problems. Upon further validation, the child has a few traits of ASD. Here, based on focused exome sequencing, we report a de novo heterozygous mutation in SYNGAP1 exon 11 with c. 1861 C > T (p.arg621ter). Currently, the child is on Atorvastatin, a RAS inhibitor, already available in the market for the treatment of hypercholesterolemia and has shown considerable improvement in global behaviour and cognitive development. The long-term follow up of the child's development would contribute to the already existing knowledge of the developmental trajectory in individuals with SYNGAP1 heterozygous mutation. In this report, we discuss the finding of a novel mutation in one of the genes, SYNGAP1, implicated in ASD/ID. Besides, we discuss the current treatment prescribed to the patient and the progress of global developmental of the child.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Mutación , Proteínas Activadoras de ras GTPasa/genética , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Secuencia de Aminoácidos , Anticolesterolemiantes/uso terapéutico , Atorvastatina/uso terapéutico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/fisiopatología , Preescolar , Exones/genética , Heterocigoto , Humanos , India , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/fisiopatología , Masculino , Secuenciación del Exoma , Proteínas Activadoras de ras GTPasa/metabolismo
8.
Pharmacol Res ; 132: 135-148, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29684672

RESUMEN

The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.


Asunto(s)
Epigénesis Genética , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética
10.
J Neurosci ; 33(25): 10447-52, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785156

RESUMEN

Critical periods of developmental plasticity contribute to the refinement of neural connections that broadly shape brain development. These windows of plasticity are thought to be important for the maturation of perception, language, and cognition. Synaptic properties in cortical regions that underlie critical periods influence the onset and duration of windows, although it remains unclear how mechanisms that shape synapse development alter critical-period properties. In this study, we demonstrate that inactivation of a single copy of syngap1, which causes a surprisingly common form of sporadic, non-syndromic intellectual disability with autism in humans, induced widespread early functional maturation of excitatory connections in the mouse neocortex. This accelerated functional maturation was observed across distinct areas and layers of neocortex and directly influenced the duration of a critical-period synaptic plasticity associated with experience-dependent refinement of cortical maps. These studies support the idea that genetic control over synapse maturation influences the duration of critical-period plasticity windows. These data also suggest that critical-period duration links synapse maturation rates to the development of intellectual ability.


Asunto(s)
Período Crítico Psicológico , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Proteínas Activadoras de ras GTPasa/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Mapeo Encefálico , Cognición/fisiología , Interpretación Estadística de Datos , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Técnicas de Placa-Clamp , Conducta Social , Tálamo/crecimiento & desarrollo , Tálamo/fisiología , Proteínas Activadoras de ras GTPasa/genética
11.
Elife ; 132024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38289036

RESUMEN

Reactive astrogliosis is a common pathological hallmark of CNS injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce ß-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Ratones Noqueados , Neuroprotección , Factor de Respuesta Sérica/metabolismo
12.
ACS Chem Neurosci ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795032

RESUMEN

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.

13.
Sci Rep ; 11(1): 96, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420088

RESUMEN

Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.


Asunto(s)
Autofagia , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Agregado de Proteínas , Análisis Espacio-Temporal
14.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955432

RESUMEN

Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2-14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq-signaling-mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity.


Stress and adversity in early childhood can have long-lasting effects, predisposing people to mental illness and mood disorders in adult life. The weeks immediately before and after birth are critical for establishing key networks of neurons in the brain. Therefore, any disruption to these neural circuits during this time can be detrimental to emotional development. However, it is still unclear which cellular mechanisms cause these lasting changes in behavior. Studies in animals suggest that these long-term effects could result from abnormalities in a few signaling pathways in the brain. For example, it has been proposed that overstimulating the cells that activate circuits in the forebrain ­ also known as excitatory neurons ­ may contribute to the behavioral changes that persist into adulthood. To test this theory, Pati et al. used genetic engineering to modulate a signaling pathway in male mice, which is known to stimulate excitatory neurons in the forebrain. The experiments showed that prolonged activation of excitatory neurons in the first two weeks after birth resulted in anxious and despair-like behaviors as the animals aged. The mice also displayed discrepancies in how they responded to certain external sensory information, which is a hallmark of schizophrenia-like behavior. However, engineering the same changes in adolescent and adult mice had no effect on their mood-related behaviors. This animal study reinforces just how critical the first few weeks of life are for optimal brain development. It provides an insight into a possible mechanism of how disruption during this time could alter emotional behavior. The findings are also relevant to psychiatrists interested in the underlying causes of mental illness after early childhood adversity.


Asunto(s)
Afecto/fisiología , Conducta Animal/fisiología , Neuronas/fisiología , Prosencéfalo/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/fisiología , Ansiedad/etiología , Femenino , Neuronas GABAérgicas/fisiología , Hipocampo/fisiología , Masculino , Ratones
15.
Open Biol ; 9(6): 180265, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31185809

RESUMEN

Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Mutación , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Predisposición Genética a la Enfermedad , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Activadoras de ras GTPasa/genética
16.
Front Mol Neurosci ; 12: 97, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143100

RESUMEN

SYNGAP1, a Synaptic Ras-GTPase activating protein, regulates synapse maturation during a critical developmental window. Heterozygous mutation in SYNGAP1 (SYNGAP1 -/+) has been shown to cause Intellectual Disability (ID) in children. Recent studies have provided evidence for altered neuronal protein synthesis in a mouse model of Syngap1 -/+. However, the molecular mechanism behind the same is unclear. Here, we report the reduced expression of a known translation regulator, FMRP, during a specific developmental period in Syngap1 -/+ mice. Our results demonstrate that FMRP interacts with and regulates the translation of Syngap1 mRNA. We further show reduced Fmr1 translation leads to decreased FMRP level during development in Syngap1 -/+ which results in an increase in Syngap1 translation. These developmental changes are reflected in the altered response of eEF2 phosphorylation downstream of NMDA Receptor (NMDAR)-mediated signaling. In this study, we propose a cross-talk between FMRP and SYNGAP1 mediated signaling which can also explain the compensatory effect of impaired signaling observed in Syngap1 -/+ mice.

17.
eNeuro ; 6(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645362

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tools are extensively used to manipulate neuronal activity in a cell type-specific manner. Whole-cell patch-clamp recordings indicate membrane depolarization, coupled with increased neuronal firing rate, following administration of the DREADD ligand, clozapine-N-oxide (CNO) to activate the Gq-coupled DREADD, hM3Dq. Although hM3Dq has been used to enhance neuronal firing in order to manipulate diverse behaviors, often within 30 min to 1 h after CNO administration, the physiological effects on excitatory neurotransmission remain poorly understood. We investigated the influence of CNO-mediated hM3Dq DREADD activation on distinct aspects of hippocampal excitatory neurotransmission at the Schaffer collateral-CA1 synapse in hippocampal slices derived from mice expressing hM3Dq in Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons. Our results indicate a clear dose-dependent effect on field EPSP (fEPSP) slope, with no change noted at the lower dose of CNO (1 µM) and a significant, long-term decline in fEPSP slope observed at higher doses (5-20 µM). Further, we noted a robust θ burst stimulus (TBS) induced long-term potentiation (LTP) in the presence of the lower CNO (1 µM) dose, which was significantly attenuated at the higher CNO (20 µM) dose. Whole-cell patch-clamp recording revealed both complex dose-dependent regulation of excitability, and spontaneous and evoked activity of CA1 pyramidal neurons in response to hM3Dq activation across CNO concentrations. Our data indicate that CNO-mediated activation of the hM3Dq DREADD results in dose-dependent regulation of excitatory hippocampal neurotransmission and highlight the importance of careful interpretation of behavioral experiments involving chemogenetic manipulation.


Asunto(s)
Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Células Cultivadas , Drogas de Diseño/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Técnicas de Placa-Clamp , Transmisión Sináptica/fisiología
19.
EBioMedicine ; 50: 260-273, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31727601

RESUMEN

BACKGROUND: Plethora of efforts fails to yield a single drug to reverse the pathogenesis of Parkinson's disease (PD) and related α-synucleopathies. METHODS: Using chemical biology, we identified a small molecule inhibitor of c-abl kinase, PD180970 that could potentially clear the toxic protein aggregates. Genetic, molecular, cell biological and immunological assays were performed to understand the mechanism of action. In vivo preclinical disease model of PD was used to assess its neuroprotection efficacy. FINDINGS: In this report, we show the ability of a small molecule inhibitor of tyrosine kinases, PD180970, to induce autophagy (cell lines and mice midbrain) in an mTOR-independent manner and ameliorate the α-synuclein mediated toxicity. PD180970 also exerts anti-neuroinflammatory potential by inhibiting the release of proinflammatory cytokines such as IL-6 (interleukin-6) and MCP-1 (monocyte chemoattractant protein-1) through reduction of TLR-4 (toll like receptor-4) mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. In vivo studies show that PD180970 is neuroprotective by degrading the toxic protein oligomers through induction of autophagy and subsiding the microglial activation. INTERPRETATION: These protective mechanisms ensure the negation of Parkinson's disease related motor impairments. FUND: This work was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship (500159-Z-09-Z), DST-SERB grant (EMR/2015/001946), DBT (BT/INF/22/SP27679/2018) and JNCASR intramural funds to RM, and SERB, DST (SR/SO/HS/0121/2012) to PAA, and DST-SERB (SB/YS/LS-215/2013) to JPC and BIRAC funding to ETA C-CAMP.


Asunto(s)
Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Agregación Patológica de Proteínas/metabolismo , Animales , Biomarcadores , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Macroautofagia , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , alfa-Sinucleína/metabolismo
20.
J Genet ; 97(3): 679-701, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30027903

RESUMEN

A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenonwhen combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas/patología , Animales , Autofagosomas/metabolismo , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/terapia , Agregado de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA