Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138037

RESUMEN

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Ratas , Masculino , Femenino , Animales , Humanos , Anciano , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Mitocondrias/metabolismo , Señalización del Calcio , Calcio/metabolismo
2.
J Mol Cell Cardiol ; 156: 105-113, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857485

RESUMEN

Sudden cardiac death due to ventricular tachyarrhythmias remains the major cause of mortality in the world. Heart failure, diabetic cardiomyopathy, old age-related cardiac dysfunction and inherited disorders are associated with enhanced propensity to malignant cardiac arrhythmias. Both defective mitochondrial function and abnormal intracellular Ca2+ homeostasis have been established as the key contributing factors in the pathophysiology and arrhythmogenesis in these conditions. This article reviews current advances in understanding of bidirectional control of ryanodine receptor-mediated sarcoplasmic reticulum Ca2+ release and mitochondrial function, and how defects in crosstalk between these two organelles increase arrhythmic risk in cardiac disease.


Asunto(s)
Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades , Mitocondrias Cardíacas/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Señalización del Calcio , Metabolismo Energético , Homeostasis , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Terapia Molecular Dirigida , Oxidación-Reducción , Retículo Sarcoplasmático/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Am J Physiol Heart Circ Physiol ; 321(4): H615-H632, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415186

RESUMEN

Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under ß-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.


Asunto(s)
Arritmias Cardíacas/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Técnicas Biosensibles , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Microscopía Confocal , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Regulación hacia Arriba , Función Ventricular Izquierda , Remodelación Ventricular
4.
J Physiol ; 598(14): 2847-2873, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30771223

RESUMEN

KEY POINTS: Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca2+ ] in a biphasic manner. Submicromolar [Ca2+ ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca2+ ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates ISK rectification by reducing the Ca2+ /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca2+ ]i . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. ABSTRACT: Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 µmol L-1 ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L-1 ), which was eliminated by inhibition of PKA (1 µmol L-1 ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L-1 ) evoked ISK in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca2+ imaging experiments established that PKA phosphorylation lessens rectification of ISK via reduction Ca2+ /voltage-dependent inhibition of the channels at high [Ca2+ ] without affecting their sensitivity to activation by Ca2+ in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Apamina , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
5.
Am J Respir Cell Mol Biol ; 58(5): 658-667, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29100477

RESUMEN

Hyperproliferative endothelial cells (ECs) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Anoctamin (Ano)-1, a calcium-activated chloride channel, can regulate cell proliferation and cell cycle in multiple cell types. However, the expression and function of Ano1 in the pulmonary endothelium is unknown. We examined whether Ano1 was expressed in pulmonary ECs and if altering Ano1 activity would affect EC survival. Expression and localization of Ano1 in rat lung microvascular ECs (RLMVECs) was assessed using immunoblot, immunofluorescence, and subcellular fractionation. Cell counts, flow cytometry, and caspase-3 activity were used to assess changes in cell number and apoptosis in response to the small molecule Ano1 activator, Eact. Changes in mitochondrial membrane potential and mitochondrial reactive oxygen species (mtROS) were assessed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide (mitochondrial membrane potential dye) and mitochondrial ROS dye, respectively. Ano1 is expressed in RLMVECs and is enriched in the mitochondria. Activation of Ano1 with Eact reduced RLMVEC counts through increased apoptosis. Ano1 knockdown blocked the effects of Eact. Ano1 activation increased mtROS, reduced mitochondrial membrane potential, increased p38 phosphorylation, and induced release of apoptosis-inducing factor. mtROS inhibition attenuated Eact-mediated p38 phosphorylation. Pulmonary artery ECs isolated from patients with idiopathic PAH (IPAH) had higher expression of Ano1 and increased cell counts compared with control subjects. Eact treatment reduced cell counts in IPAH cells, which was associated with increased apoptosis. In summary, Ano1 is expressed in lung EC mitochondria. Activation of Ano1 promotes apoptosis of pulmonary ECs and human IPAH-pulmonary artery ECs, likely via increased mtROS and p38 phosphorylation, leading to apoptosis.


Asunto(s)
Anoctamina-1/agonistas , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Pulmón/irrigación sanguínea , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Anoctamina-1/metabolismo , Estudios de Casos y Controles , Hipoxia de la Célula , Células Cultivadas , Células Endoteliales/enzimología , Células Endoteliales/patología , Hipertensión Pulmonar Primaria Familiar/enzimología , Hipertensión Pulmonar Primaria Familiar/patología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
6.
J Physiol ; 596(5): 827-855, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29313986

RESUMEN

KEY POINTS: Abnormal mitochondrial morphology and function in cardiomyocytes are frequently observed under persistent Gq protein-coupled receptor (Gq PCR) stimulation. Cardiac signalling mechanisms for regulating mitochondrial morphology and function under pathophysiological conditions in the heart are still poorly understood. We demonstrate that a downstream kinase of Gq PCR, protein kinase D (PKD) induces mitochondrial fragmentation via phosphorylation of dynamin-like protein 1 (DLP1), a mitochondrial fission protein. The fragmented mitochondria enhance reactive oxygen species generation and permeability transition pore opening in mitochondria, which initiate apoptotic signalling activation. This study identifies a novel PKD-specific substrate in cardiac mitochondria and uncovers the role of PKD on cardiac mitochondria, with special emphasis on the molecular mechanism(s) underlying mitochondrial injury with abnormal mitochondrial morphology under persistent Gq PCR stimulation. These findings provide new insights into the molecular basis of cardiac mitochondrial physiology and pathophysiology, linking Gq PCR signalling with the regulation of mitochondrial morphology and function. ABSTRACT: Regulation of mitochondrial morphology is crucial for the maintenance of physiological functions in many cell types including cardiomyocytes. Small and fragmented mitochondria are frequently observed in pathological conditions, but it is still unclear which cardiac signalling pathway is responsible for regulating the abnormal mitochondrial morphology in cardiomyocytes. Here we demonstrate that a downstream kinase of Gq protein-coupled receptor (Gq PCR) signalling, protein kinase D (PKD), mediates pathophysiological modifications in mitochondrial morphology and function, which consequently contribute to the activation of apoptotic signalling. We show that Gq PCR stimulation induced by α1 -adrenergic stimulation mediates mitochondrial fragmentation in a fission- and PKD-dependent manner in H9c2 cardiac myoblasts and rat neonatal cardiomyocytes. Upon Gq PCR stimulation, PKD translocates from the cytoplasm to the outer mitochondrial membrane (OMM) and phosphorylates a mitochondrial fission protein, dynamin-like protein 1 (DLP1), at S637. PKD-dependent phosphorylation of DLP1 initiates DLP1 association with the OMM, which then enhances mitochondrial fragmentation, mitochondrial superoxide generation, mitochondrial permeability transition pore opening and apoptotic signalling. Finally, we demonstrate that DLP1 phosphorylation at S637 by PKD occurs in vivo using ventricular tissues from transgenic mice with cardiac-specific overexpression of constitutively active Gαq protein. In conclusion, Gq PCR-PKD signalling induces mitochondrial fragmentation and dysfunction via PKD-dependent DLP1 phosphorylation in cardiomyocytes. This study is the first to identify a novel PKD-specific substrate, DLP1 in mitochondria, as well as the functional role of PKD in cardiac mitochondria. Elucidation of these molecular mechanisms by which PKD-dependent enhanced fission mediates cardiac mitochondrial injury will provide novel insight into the relationship among mitochondrial form, function and Gq PCR signalling.


Asunto(s)
Dinaminas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales , Miocitos Cardíacos/patología , Proteína Quinasa C/metabolismo , Animales , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
7.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L748-L759, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28258105

RESUMEN

Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/patología , Ventrículos Cardíacos/patología , Miocardio/patología , Fumar/efectos adversos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hemodinámica/efectos de los fármacos , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos AKR , Nicotina/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacos , Disfunción Ventricular Derecha/complicaciones , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Surg Res ; 203(1): 154-62, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27338546

RESUMEN

BACKGROUND: Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury but excessive autophagy can also be detrimental leading to apoptosis. Our laboratory has previously shown that moderate alcohol consumption alters expression of proteins in the insulin signaling pathway and worsens glucose metabolism in the liver in a swine model of metabolic syndrome. We examined the effect of alcohol consumption on apoptosis and autophagy signaling in the liver in our clinically relevant animal model of chronic hypercholesterolemia. MATERIAL AND METHODS: Twenty-six Yorkshire swine were fed a high-fat diet for 4 wks and were then split into three groups: hypercholesterolemic diet alone (HCC, n = 9), hypercholesterolemic diet with vodka (hypercholesterolemic vodka [HCV], n = 9), and hypercholesterolemic diet with wine (hypercholesterolemic wine [HCW], n = 8) for 7 wks. Animals underwent euthanasia, and liver tissue samples were harvested for analysis. Liver tissue was analyzed via Western blot analysis. Protein density data were normalized to GAPDH and is reported as fold-change values ± standard error of the mean compared to the high-cholesterol diet control group. A Kruskal-Wallis test with a Dunn's multiple comparison test was used to compare the means among groups. RESULTS: The HCV group showed significant increases in several proapoptotic proteins (including caspase 3, caspase 8, caspase 9, and cleaved caspase 9) compared with the HCC group. There was a decrease in the proapoptotic protein (BAD) and an increase in anti-apoptotic signal (B-cell lymphoma-2) in the HCW group compared with HCC control. There were increases in pro-survival proteins (AKT, p-AKT, mTOR, p-mTOR) in the HCW and the HCV group compared with control (HCC). There were decreases in autophagy protein LCB-3 in the HCW and HCV compared with the control. CONCLUSIONS: We found that moderate alcohol consumption altered protein expression related to apoptosis and autophagy signaling in pig liver in the setting of hypercholesterolemia. Interestingly, vodka may induce proapoptotic pathways in liver tissue, whereas wine may induce anti-apoptotic signaling. These results provide a mechanism by which vodka may contribute to alcoholic liver disease and supports the notion that wine, containing resveratrol, may prevent cellular apoptosis in liver tissue in the setting of hypercholesterolemia.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Bebidas Alcohólicas , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Etanol/farmacología , Hígado/efectos de los fármacos , Bebidas Alcohólicas/efectos adversos , Animales , Apoptosis/fisiología , Autofagia/fisiología , Biomarcadores/metabolismo , Western Blotting , Enfermedad Crónica , Etanol/administración & dosificación , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Masculino , Porcinos
9.
Am J Physiol Heart Circ Physiol ; 309(4): H625-33, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26071546

RESUMEN

Mitochondrial Ca(2+)-activated large-conductance K(+) (BKCa) channels are thought to provide protection during ischemic insults in the heart. Rottlerin (mallotoxin) has been implicated as a potent BKCa activator. The purpose of this study was twofold: 1) to investigate the efficacy of BKCa channel activation as a cardioprotective strategy during ischemic cardioplegic arrest and reperfusion (CP/R) and 2) to assess the specificity of rottlerin for BKCa channels. Wild-type (WT) and BKCa knockout (KO) mice were subjected to an isolated heart model of ischemic CP/R. A mechanism of rottlerin-induced cardioprotection was also investigated using H9c2 cells subjected to in vitro CP/reoxygenation and assessed for mitochondrial membrane potential and reactive oxygen species (ROS) production. CP/R decreased left ventricular developed pressure, positive and negative first derivatives of left ventricular pressure, and coronary flow (CF) in WT mice. Rottlerin dose dependently increased the recovery of left ventricular function and CF to near baseline levels. BKCa KO hearts treated with or without 500 nM rottlerin were similar to WT CP hearts. H9c2 cells subjected to in vitro CP/R displayed reduced mitochondrial membrane potential and increased ROS generation, both of which were significantly normalized by rottlerin. We conclude that activation of BKCa channels rescues ischemic damage associated with CP/R, likely via effects on improved mitochondrial membrane potential and reduced ROS generation.


Asunto(s)
Acetofenonas/farmacología , Benzopiranos/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Animales , Línea Celular , Células Cultivadas , Paro Circulatorio Inducido por Hipotermia Profunda , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda
10.
J Surg Res ; 199(2): 296-305, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26188957

RESUMEN

BACKGROUND: We tested the short-term effects of completely nonpulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. METHODS: Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10-25 mm Hg) at a rate of 40 pulses per minute (PP). The remaining five calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (PODs) 1, 7, and 14. Skeletal muscle-tissue water content was measured, and morphologic alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin, and CD31 were analyzed by immunohistochemistry. RESULTS: There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, PODs 1, 7, and 14, respectively. There were no significant alterations in the expression and/or distribution of VE-cadherin, phospho-VE-cadherin, and CD31 in skeletal muscle vasculature at baseline, PODs 1, 7, and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histologic damage scores at PODs 7 and 14, it failed to reach statistical significance. CONCLUSIONS: There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability.


Asunto(s)
Permeabilidad Capilar , Corazón Artificial , Hemorreología , Uniones Adherentes/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Bovinos , Edema , Endotelio Vascular/metabolismo , Femenino , Masculino , Microvasos/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología
11.
Circ J ; 79(3): 455-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25746520

RESUMEN

Small- and large-conductance Ca(2+)-activated K(+)channels (SKCa and BKCa, respectively) may be important targets for therapeutic interventions in a variety of cardiac conditions. In cardiomyocytes, BKCa channels are localized to mitochondria where they beneficially modulate reactive oxygen species, mitochondrial Ca(2+), and respiration. In vascular smooth muscle cells, BKCa channels regulate vascular tone and promote vasodilation. Activation of BKCa channels has demonstrated significant cardioprotection following ischemic injury, including improved function and reduced infarct size. SKCa channels are expressed in both the membrane and mitochondria of cardiomyocytes. Modulation of cardiomyocyte SKCa channels may be beneficial for arrhythmia, heart failure, and ischemia. Mitochondrial SKCa channels may provide similar benefit to BKCa channels. In addition, activation of SKCa channels on the endothelium promotes vasodilation. This mini-review focuses on the modulation of cardiomyocyte BKCa and SKCa channels for cardioprotection and briefly address associated potential therapeutic benefits in the coronary circulation.


Asunto(s)
Endotelio Vascular/metabolismo , Cardiopatías , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Enfermedades Vasculares , Animales , Endotelio Vascular/patología , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/terapia , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/patología , Miocitos Cardíacos/patología , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Enfermedades Vasculares/terapia
12.
Pulm Circ ; 14(2): e12358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576776

RESUMEN

Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.

13.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-39005332

RESUMEN

Pulmonary hypertension (PH) results in RV hypertrophy, fibrosis and dysfunction resulting in RV failure which is associated with impaired RV metabolism and mitochondrial respiration. Mitochondrial supercomplexes (mSC) are assemblies of multiple electron transport chain (ETC) complexes that consist of physically associated complex I, III and IV that may enhance respiration and lower ROS generation. The goal of this study was to determine if mSCs are reduced in RV dysfunction associated with PH. We induced PH in Sprague-Dawley rats by Sugen/Hypoxia (3 weeks) followed by normoxia (4 weeks). Control and PH rats were subjected to echocardiography, blue and clear native-PAGE to assess mSC abundance and activity, and cardiomyocyte isolation to assess mitochondrial reactive oxygen species (ROS). mSC formation was also assessed in explanted human hearts with and without RV dysfunction. RV activity of CI and CIV and abundance of CI, CIII and CIV in mitochondrial mSCs was severely reduced in PH rats compared to control. There were no differences in total CI or CIV activity or abundance in smaller ETC assemblies. There were no changes in both RV and LV of expression of representative ETC complex subunits. PAT, TAPSE and RV Wall thickness significantly correlated with CIV and CI activity in mSC, but not total CI and CIV activity in the RV. Consistent with reduced mSC activity, isolated PH RV myocytes had increased mitochondrial ROS generation compared to control. Reduced mSC activity was also demonstrated in explanted human RV tissue from patients undergoing cardiac transplant with RV dysfunction. The right atrial pressure/pulmonary capillary wedge pressure ratio (RAP/PCWP, an indicator of RV dysfunction) negatively correlated with RV mSC activity level. In conclusion, reduced assembly and activity of mitochondrial mSC is correlated with RV dysfunction in PH rats and humans with RV dysfunction.

14.
Circulation ; 126(11 Suppl 1): S73-80, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22965996

RESUMEN

BACKGROUND: We investigated the effects of cardiopulmonary bypass (CPB) on peripheral arteriolar reactivity and associated signaling pathways in poorly controlled (UDM), controlled (CDM), and case-matched nondiabetic (ND) patients undergoing coronary artery bypass grafting (CABG). METHODS AND RESULTS: Skeletal muscle arterioles were harvested before and after CPB from the UDM patients (hemoglobin A1c [HbA1c]=9.0 ± 0.3), the CDM patients (HbA1c=6.3 ± 0.15), and the ND patients (HbA1c=5.2 ± 0.1) undergoing CABG surgery (n=10/group). In vitro relaxation responses of precontracted arterioles to endothelium-dependent vasodilators adenosine 5'-diphosphate (ADP) and substance P and the endothelium-independent vasodilator sodium nitroprusside (SNP) were examined. The baseline responses to ADP, substance P, and SNP of arterioles from the UDM patients were decreased as compared with microvessels from the ND or CDM patients (P<0.05). The post-CPB relaxation responses to ADP and substance P were significantly decreased in all 3 groups compared with pre-CPB responses (P<0.05). However, these decreases were more pronounced in the UDM group (P<0.05). The post-CPB response to SNP was significantly decreased only in the UDM group, not in the other 2 groups compared with pre-CPB. The expression of protein kinase C (PKC)-α, PKC-ß, protein oxidation, and nitrotyrosine in the skeletal muscle were significantly increased in the UDM group as compared with those of ND or CDM groups (P<0.05). CONCLUSIONS: Poorly controlled diabetes results in impaired arteriolar function before and after CPB. These alterations are associated with the increased expression/activation of PKC-α and PKC-ß and enhanced oxidative and nitrosative stress.


Asunto(s)
Puente Cardiopulmonar/efectos adversos , Puente de Arteria Coronaria , Diabetes Mellitus Tipo 2/complicaciones , Hipoglucemiantes/uso terapéutico , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adenosina Difosfato/farmacología , Anciano , Arteriolas/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Susceptibilidad a Enfermedades , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Inducción Enzimática/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/farmacología , Inflamación/etiología , Inflamación/fisiopatología , Masculino , Persona de Mediana Edad , Nitroprusiato/farmacología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Sustancia P/farmacología , Tirosina/análogos & derivados , Tirosina/análisis , Vasoconstricción/efectos de los fármacos , Vasodilatadores/farmacología
15.
Free Radic Biol Med ; 208: 700-707, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748718

RESUMEN

INTRODUCTION: Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS: Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS: In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS: In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.


Asunto(s)
Síndrome Metabólico , Isquemia Miocárdica , Porcinos , Animales , Miocardio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Calpaína/farmacología , Síndrome Metabólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carbonilación Proteica , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo , Modelos Animales de Enfermedad
16.
Circulation ; 124(11 Suppl): S55-61, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21911819

RESUMEN

BACKGROUND: Cardioplegia and cardiopulmonary bypass (CP/CPB) subjects myocardium to complex injurious stimuli that can result in cardiomyocyte and vascular contractile abnormalities. Rottlerin, originally identified as a delta-protein kinase C inhibitor, has a number of known additional effects that may be beneficial in the setting of CP/CPB. We tested the hypothesis that rottlerin mitigates deleterious effects associated with CP/CPB. METHODS AND RESULTS: Langendorff-perfused isolated rat hearts were subjected to 2 hours intermittent cold (10°C) CP (St Thomas II) followed by 30 minutes normothermic reperfusion. CP was delivered every 30 minutes for 1 minute. Hearts were treated with rottlerin 1 µmol/L (CP+R) (n=7) or without rottlerin (CP) (n=9), and the BK(Ca++) channel inhibitor paxilline 100 nmol/L was supplied in the CP. Hearts constantly perfused with KHB served as controls (n=6). Baseline parameters of cardiac function were similar between groups. CP resulted in reduced cardiac function (left ventricular diastolic pressure, 39 ± 3.8%; ± dP/dt, 32 ± 4.4%, -41 ± 5.1% decrease compared to baseline). Treatment with rottlerin 1 µmol/L significantly improved CP-induced cardiac function (left ventricular diastolic pressure, 20 ± 5.9%; ± dP/dt, 5.2 ± 4.5%, -11.6 ± 4.7% decrease versus baseline; P<0.05 CP+R versus CP). Rottlerin also caused a significant increase in coronary flow postreperfusion (CP, 34 ± 4.2% decrease from baseline; CP+R, 26 ± 9.6% increase over baseline; P=0.01). Independent of vascular effects, CP significantly decreased isolated myocyte contraction, which was restored by rottlerin treatment. The BK(Ca++) channel inhibitor greatly reduced the majority of beneficial effects associated with rottlerin. CONCLUSIONS: Rottlerin significantly improves cardiac performance after CP arrest through improved cardiomyocyte contraction and coronary perfusion.


Asunto(s)
Acetofenonas/farmacología , Benzopiranos/farmacología , Frío , Vasos Coronarios/efectos de los fármacos , Paro Cardíaco Inducido/métodos , Contracción Miocárdica/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Acetofenonas/uso terapéutico , Animales , Benzopiranos/uso terapéutico , Vasos Coronarios/fisiología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Indoles/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Masculino , Modelos Animales , Contracción Miocárdica/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
17.
J Thorac Cardiovasc Surg ; 163(1): e11-e27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32359903

RESUMEN

OBJECTIVES: Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS: Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS: In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS: Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.


Asunto(s)
Calpaína/metabolismo , Colágeno , Glicoproteínas/farmacología , Isquemia Miocárdica/metabolismo , Miocardio , Remodelación Ventricular , Animales , Quimiocina CCL2/metabolismo , Colágeno/biosíntesis , Colágeno/metabolismo , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/metabolismo , Modelos Animales de Enfermedad , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/prevención & control , Hipercolesterolemia/metabolismo , Janus Quinasa 2/metabolismo , Miocardio/metabolismo , Miocardio/patología , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Porcinos , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología
18.
Circulation ; 122(11 Suppl): S142-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20837905

RESUMEN

BACKGROUND: Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. METHODS AND RESULTS: Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/d orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac MRI and coronary angiography 7 weeks later before euthanasia and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (P<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (P=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (P=0.32). Tissue blood flow during stress was 2.8-fold greater in HCRV swine when compared with HCC swine (P=0.04). Endothelium-dependent microvascular relaxation response to Substance P was diminished in HCC swine, which was rescued by resveratrol treatment (P=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine versus control swine (P=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV versus HCC swine of the following markers of angiogenesis: VEGF (P=0.002), peNOS (ser1177) (P=0.04), NFkB (P=0.004), and pAkt (thr308) (P=0.001). CONCLUSIONS: Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelium-dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Circulación Coronaria/efectos de los fármacos , Hipercolesterolemia/tratamiento farmacológico , Microcirculación/efectos de los fármacos , Isquemia Miocárdica/tratamiento farmacológico , Estilbenos/farmacología , Animales , Capilares/crecimiento & desarrollo , Capilares/metabolismo , Capilares/patología , Enfermedad Crónica , Enfermedad Coronaria/metabolismo , Enfermedad Coronaria/patología , Enfermedad Coronaria/fisiopatología , Enfermedad Coronaria/prevención & control , Modelos Animales de Enfermedad , Femenino , Humanos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/mortalidad , Hipercolesterolemia/fisiopatología , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Neovascularización Fisiológica/efectos de los fármacos , Perfusión , Resveratrol , Transducción de Señal/efectos de los fármacos , Porcinos , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Circulation ; 122(11 Suppl): S150-5, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20837906

RESUMEN

BACKGROUND: We investigated the effects of cardiopulmonary bypass (CPB) on the contractile response of human peripheral microvasculature to endothelin-1 (ET-1), examined the role of specific ET receptors and protein kinase C-alpha (PKC-α), and analyzed ET-1-related gene/protein expression in this response. METHODS AND RESULTS: Human skeletal muscle arterioles (90 to 180 µm in diameter) were dissected from tissue harvested before and after CPB from 30 patients undergoing cardiac surgery. In vitro contractile response to ET-1 was assessed by videomicroscopy, with and without an endothelin-A (ET-A) receptor antagonist, an endothelin-B (ET-B) antagonist, or a PKC-α inhibitor. The post-CPB contractile response of peripheral arterioles to ET-1 was significantly decreased compared with pre-CPB response. The response to ET-1 was significantly inhibited in the presence of the ET-A antagonist BQ123 but unchanged in the presence of the ET-B receptor antagonist BQ788. Pretreatment with the PKC-α inhibitor safingol reversed ET-1-induced response from contraction to relaxation. The total protein levels of ET-A and ET-B receptors were not altered after CPB. Microarray analysis showed no significant changes in the gene expression of ET receptors, ET-1-related proteins, and protein kinases after CPB. CONCLUSIONS: CPB decreases myogenic contractile function of human peripheral arterioles in response to ET-1. The contractile response to ET-1 is through activation of ET-A receptors and PKC-α. CPB has no effects on ET-1-related gene/protein expression. These results provide novel mechanisms of ET-1-induced contraction in the setting of vasomotor dysfunction after cardiac surgery.


Asunto(s)
Puente Cardiopulmonar , Endotelina-1/farmacología , Microcirculación/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético , Transducción de Señal/efectos de los fármacos , Anciano , Antihipertensivos/farmacología , Antagonistas de los Receptores de Endotelina , Endotelina-1/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligopéptidos/farmacología , Péptidos Cíclicos/farmacología , Piperidinas/farmacología , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Endotelina/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología
20.
Am J Physiol Heart Circ Physiol ; 300(5): H1669-77, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357508

RESUMEN

We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 µM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 µM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Paro Cardíaco Inducido/efectos adversos , Corazón/fisiopatología , Cadena B de alfa-Cristalina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Masculino , Modelos Animales , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA