RESUMEN
Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.
Asunto(s)
Escherichia coli , Galectina 3 , Isopropil Tiogalactósido , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/biosíntesis , Galectina 3/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isopropil Tiogalactósido/farmacología , Expresión Génica , Galectinas/genética , Galectinas/metabolismo , Galectinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismoRESUMEN
A major pathway for B cell acquisition of lymph-borne particulate antigens relies on antigen capture by subcapsular sinus macrophages of the lymph node. Here we tested whether this mechanism is also important for humoral immunity to inactivated influenza virus. By multiple approaches, including multiphoton intravital imaging, we found that antigen capture by sinus-lining macrophages was important for limiting the systemic spread of virus but not for the generation of influenza-specific humoral immunity. Instead, we found that dendritic cells residing in the lymph node medulla use the lectin receptor SIGN-R1 to capture lymph-borne influenza virus and promote humoral immunity. Thus, our results have important implications for the generation of durable humoral immunity to viral pathogens through vaccination.
Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/metabolismo , Endocitosis , Virus de la Influenza A/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Anticuerpos Antivirales/sangre , Presentación de Antígeno , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Movimiento Celular , Células Cultivadas , Ácido Clodrónico/administración & dosificación , Dendrímeros/administración & dosificación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/genética , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoterapia Activa , Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/virología , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunologíaRESUMEN
Galectins are galactoside-binding lectins that are functional dimers or higher-order oligomers. Multivalent binding has been shown to augment the relatively low affinity of the galectins for their galactoside-binding partners, enabling the galectins to play an important role in the global remodeling of cells that occurs during the stress conditions of disease states, including heart disease and cancer. The presence of galectins in the nematode Caenorhabditis elegans and their galactoside-binding properties have been demonstrated, but the role of multivalent interactions for C. elegans galectins is unknown. Here, we describe the synthesis of Galß1-4Fuc-functionalized poly(amidoamine) dendrimers and their utility in studies using C. elegans during oxidative stress. C. elegans were fed Galß1-4Fuc-functionalized dendrimers and RNA interference to knock down lectins lec-1 and lec-10 while undergoing oxidative stress. C. elegans that were pretreated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. Worms that were fed fluorescently tagged glycodendrimers and imaged indicated that the dendrimers are primarily present in the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study suggests that multivalently presented Galß1-4Fuc can protect C. elegans from oxidative stress.
Asunto(s)
Proteínas de Caenorhabditis elegans , Dendrímeros , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dendrímeros/farmacología , Fucosa , Galactosa , Galectinas/metabolismo , Estrés OxidativoRESUMEN
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Asunto(s)
Farmacorresistencia Bacteriana , Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Mutación , Antibacterianos/química , Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Espectroscopía de Resonancia Magnética/métodos , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Mutación/efectos de los fármacosRESUMEN
INTRODUCTION: Multivalent antimicrobial dendrimers are an exciting new system that is being developed to address the growing problem of drug resistant bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is a quantitative and reproducible method for the determination of bacterial response to environmental stressors and for visualization of perturbations to biochemical pathways. OBJECTIVES: NMR metabolomics is used to elucidate metabolite differences between wild type and antimicrobially mutated Escherichia coli (E. coli) samples. METHODS: Proton (1H) NMR hydrophilic metabolite analysis was conducted on samples of E. coli after 33 growth cycles of a minimum inhibitory challenge to E. coli by poly(amidoamine) dendrimers functionalized with mannose and with C16-DABCO quaternary ammonium endgroups and compared to the metabolic profile of wild type E. coli. RESULTS: The wild type and mutated E. coli samples were separated into distinct sample sets by hierarchical clustering, principal component analysis (PCA) and sparse partial least squares discriminate analysis (sPLS-DA). Metabolite components of membrane fortification and energy related pathways had a significant p value and fold change between the wild type and mutated E. coli. Amino acids commonly associated with membrane fortification from cationic antimicrobials, such as lysine, were found to have a higher concentration in the mutated E. coli than in the wild type E. coli. N-acetylglucosamine, a major component of peptidoglycan synthesis, was found to have a 25-fold higher concentration in the mid log phase of the mutated E. coli than in the mid log phase of the wild type. CONCLUSION: The metabolic profile suggests that E. coli change their peptidoglycan composition in order to garner protection from the highly positively charged and multivalent C16-DABCO and mannose functionalized dendrimer.
Asunto(s)
Farmacorresistencia Bacteriana/fisiología , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Aminoácidos/metabolismo , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Escherichia coli/metabolismo , Imagen por Resonancia Magnética/métodos , MetabolomaRESUMEN
Chemoenzymatic synthesis is an important strategy for the formation of glycopolymers. The use of a smaller number of traditional chemical steps and enzyme catalyzed reactions increases the yield of glycopolymer that can be produced by reducing the overall number of synthetic steps. In addition, chemoenzymatic routes are likely to be more accessible to those without a background in carbohydrate synthesis, making glycopolymers more available for studies across a broader range of scientists. Here, the enzymatic addition of galactose to N-acetylglucosamine functionalized glycodendrimers reduced the requisite number of synthetic steps for the full chemical synthesis of N-acetyl lactosamine (Lac NAc) functionalized dendrimers to four steps. Unpurified cell lysate was used in the enzyme catalyzed glycosylation, and product glycodendrimers were readily purified by dialysis after enzymatic degradation of all protein components of the lysate in the crude reaction mixture. Lac NAc functionalized dendrimers were used very effectively in homotypic cancer cellular aggregation assays and were found to either inhibit or enhance galectin-3 mediated cancer cellular aggregation, with differences in outcomes dependent on the generation of Lac NAc functionalized dendrimers that were used.
Asunto(s)
Carbohidratos/química , Enzimas/química , Galectinas/química , Polímeros/química , Polímeros/síntesis química , Acetilglucosamina/química , Amino Azúcares/química , Sitios de Unión , Línea Celular Tumoral , Glicosilación , HumanosRESUMEN
The development of pathogenic bacteria resistant to current treatments is a major issue facing the world today. Here, the synthesis and biological activity of fourth generation poly(amidoamine) dendrimers decorated with 1-hexadecyl-azoniabicylo[2.2.2]octane (C16-DABCO), a quaternary ammonium compound known to have antibacterial activity, are described. This highly cationic dendrimer antibiotic was tested against several Gram positive and Gram negative strains of pathogenic bacteria and exhibited activity against both. Higher activity toward the Gram positive strains that were tested was observed. After the antimicrobial activity was assessed, E. coli and B. cereus were subjected to a resistance selection study. This study demonstrated that a multivalent approach to antimicrobial design significantly reduces the likelihood of developing bacterial resistance. Highly cationic dendrimers were also used as pretreatment of a membrane to prevent biofilm formation.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Dendrímeros/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacologíaRESUMEN
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Asunto(s)
Galectina 1/metabolismo , Neoplasias/patología , Animales , Adhesión Celular , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Dendrímeros/química , Dendrímeros/metabolismo , Matriz Extracelular/metabolismo , Galectina 1/genética , Humanos , Invasividad Neoplásica , Neoplasias/metabolismo , Neovascularización Patológica , Poloxámero/química , Poloxámero/metabolismo , Rotaxanos/química , Rotaxanos/metabolismo , Microambiente TumoralRESUMEN
Four generations of lactose-functionalized polyamidoamine (PAMAM) were employed to further the understanding of multivalent galectin-1 mediated interactions. Dynamic light scattering and fluorescence microscopy were used to study the multivalent interaction of galectin-1 with the glycodendrimers in solution, and glycodendrimers were observed to organize galectin-1 into nanoparticles. In the presence of a large excess of galectin-1, glycodendrimers nucleated galectin-1 into nanoparticles that were remarkably homologous in size (400-500 nm). To understand augmentation of oncologic cellular aggregation by galectin-1, glycodendrimers were used in cell-based assays with human prostate carcinoma cells (DU145). The results revealed that glycodendrimers provided competitive binding sites for galectin-1, which diverted galectin-1 from its typical function in cellular aggregation of DU145 cells.
RESUMEN
By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased.
Asunto(s)
Dendrímeros/metabolismo , Galectina 3/metabolismo , Lactosa/metabolismo , Mucina-1/metabolismo , Neoplasias/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Dendrímeros/química , Humanos , Lactosa/análogos & derivados , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de ProteínasRESUMEN
Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer-galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.
RESUMEN
The development of methodology that is designed to allow a significant increase in the patterning and in the functionalization of the dendrimer is the ultimate goal of the research described here. Glycoside clusters based on TRIS were formed using click chemistry and were attached to PAMAM dendrimers. A series of dendrimers bearing tris-mannoside and an ethoxyethanol group was synthesized, and the binding interactions of these dendrimers with Concanavalin A were evaluated using inhibition ELISAs. The results of the inhibition ELISAs suggest that tris-mannoside clusters can replace individual sugars on the dendrimer without loss of function. Since tris-mannoside clustering allows for a redistribution of the dendrimers' surface functionalities, from this chemistry one can envision patterned dendrimers that incorporate multiple groups to increase the function and utility of the dendrimer.
Asunto(s)
Dendrímeros/química , Secuencia de Carbohidratos , Ensayo de Inmunoadsorción Enzimática , Ligandos , Datos de Secuencia Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Propiedades de SuperficieRESUMEN
Understanding protein-carbohydrate interactions is essential for elucidating biological pathways and cellular mechanisms but is often difficult due to the prevalence of multivalent interactions. Here, we evaluate the multivalent glycodendrimer framework as a means to describe the inhibition potency of multivalent mannose-functionalized dendrimers using surface plasmon resonance (SPR). Using highly robust, mannose-functionalized dithiol self-assembled monolayers on gold surfaces, we found that glycodendrimers were efficient inhibitors of protein-carbohydrate interactions. IC(50) values ranging from 260 nM to 13 nM were obtained for mannose-functionalized dendrimers with Concanavalin A.
RESUMEN
Dendritic polyglycerols (dPGs) are emerging as important polymers for the study of biological processes due to their relatively low toxicity and excellent biocompatibility. The highly branched nature and high density of endgroups make the dPGs particularly attractive frameworks for the study of multivalent interactions such as multivalent protein-carbohydrate interactions. Here, we report the synthesis of a series of lactose functionalized dPGs with different hydrodynamic radii. A series of lactose functionalized dPGs bearing different densities of lactose functional groups was also synthesized. These lactose functionalized dPGs were used to study the templated aggregation of galectin-3, a galactoside binding protein that is overexpressed during many processes involved in cancer progression. Dynamic light scattering measurements revealed a direct correlation between the hydrodynamic radii of the lactose functionalized dPGs and the size of the galectin-3/lactose functionalized dPG aggregates formed upon mixing the lactose functionalized dPGs with galectin-3 in solution. These studies exposed the critical role of galectin-3's N-terminal domain in formation of galectin-3 multimers and also enabled comparisons of polymer templated aggregation using nonspecific interactions versus specific protein-carbohydrate binding interactions.
RESUMEN
Measuring the binding affinity for proteins that can aggregate or undergo complex binding motifs presents a variety of challenges. In this study, fluorescence lifetime measurements using intrinsic tryptophan fluorescence were performed to address these challenges and to quantify the binding of a series of carbohydrates and carbohydrate-functionalized dendrimers to recombinant human galectin-3. Collectively, galectins represent an important target for study; in particular, galectin-3 plays a variety of roles in cancer biology. Galectin-3 binding dissociation constants (K D) were quantified: lactoside (73 ± 4 µM), methyllactoside (54 ± 10 µM), and lactoside-functionalized G(2), G(4), and G(6)-PAMAM dendrimers (120 ± 58 µM, 100 ± 45 µM, and 130 ± 25 µM, respectively). The chosen examples showcase the widespread utility of time-dependent fluorescence spectroscopy for determining binding constants, including interactions for which standard methods have significant limitations.
RESUMEN
Aggregation plays an integral role in multivalent protein-carbohydrate interactions, Alzheimer's and other amyloid-related diseases, and infection response. Efforts to apply controlled aggregation in toxin sensors have been made. We have developed a label-free intrinsic fluorescence lifetime assay that uniquely can monitor aggregation processes in real time without interference from precipitation. Fluorescence decay curves were measured with high precision at 1 s time intervals following addition of a glycodendrimer to a lectin-containing solution. Changes in the fluorescence intensity and lifetime signified formation of complexes. However, these changes were not associated with the initial lectin-sugar binding events. Rather, they appeared to be caused by clustering and subsequent conformational rearrangement of the lectins. Studies were conducted with mannose-functionalized polyamidoamine (PAMAM) dendrimers of the second through sixth generations and Concanavalin A. The apparent rate constant, when expressed on a per-mannose basis, increased with dendrimer generation, particularly in going from the fourth to the sixth generation. However, the identical fluorescence decay waveforms for saturating amounts of dendrimer suggested that all of the glycodendrimer generations studied reach a comparable state of aggregation. Although self-quenching of tryptophan resonances that was induced by clustering was monitored in this study, the reported method is not limited to such and is viable for numerous binding studies.
Asunto(s)
Concanavalina A/química , Mediciones Luminiscentes , Poliaminas/química , Proteínas/química , Dendrímeros , Fluorescencia , Triptófano/química , Triptófano/metabolismoRESUMEN
Carbohydrate-protein binding is important to many areas of biochemistry. Here, backscattering interferometry (BSI) has been shown to be a convenient and sensitive method for obtaining quantitative information about the strengths and selectivities of such interactions. The surfaces of glass microfluidic channels were covalently modified with extravidin, to which biotinylated lectins were subsequently attached by incubation and washing. The binding of unmodified carbohydrates to the resulting avidin-immobilized lectins was monitored by BSI. Dose-response curves that were generated within several minutes and were highly reproducible in multiple wash/measure cycles provided adsorption coefficients that showed mannose to bind to concanavalin A (conA) with 3.7 times greater affinity than glucose consistent with literature values. Galactose was observed to bind selectively and with similar affinity to the lectin BS-1. The avidities of polyvalent sugar-coated virus particles for immobilized conA were much higher than monovalent glycans, with increases of 60-200 fold per glycan when arrayed on the exterior surface of cowpea mosaic virus or bacteriophage Qbeta. Sugar-functionalized PAMAM dendrimers showed size-dependent adsorption, which was consistent with the expected density of lectins on the surface. The sensitivity of BSI matches or exceeds that of surface plasmon resonance and quartz crystal microbalance techniques, and is sensitive to the number of binding events, rather than changes in mass. The operational simplicity and generality of BSI, along with the near-native conditions under which the target binding proteins are immobilized, make BSI an attractive method for the quantitative characterization of the binding functions of lectins and other proteins.
Asunto(s)
Carbohidratos/análisis , Interferometría/métodos , Lectinas/química , Avidina/química , Biotina/química , Carbohidratos/química , Concanavalina A/química , Lectinas/metabolismo , Metaboloma , Unión ProteicaRESUMEN
Peracetylation is a very common protection strategy that is widely implemented in carbohydrate synthesis. Here, a method for the peracetylation of carbohydrates using catalytic In(OTf)(3) in neat acetic anhydride is reported. In(OTf)(3) has low toxicity and is mild and water tolerant, and the reactions are high yielding and efficient. Details regarding the scope and mechanism of the reaction are briefly discussed.
Asunto(s)
Acetilación , Carbohidratos/química , Indio/química , Mesilatos/química , Carbohidratos/efectos de la radiación , Catálisis , Microondas , SolubilidadRESUMEN
In the past year, significant advances have been made in the synthesis and study of glycodendrimers and peptide dendrimers. Application of these dendrimers to the study of carbohydrate-protein and protein-protein interactions has facilitated the understanding of these processes. In addition, dendrimers show great promise as DNA- and drug-delivery systems.
Asunto(s)
Carbohidratos/química , Péptidos/química , Polímeros/química , Bioquímica/métodos , Biotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Sustancias MacromolecularesRESUMEN
Starburst dendrimers are receiving considerable attention as templates for the assembly of structured arrays of molecular components. This research motivates the development of improved methods for dendrimer characterization-specifically, for determining the numbers, distributions of numbers, and spatial distribution of molecular species synthetically attached to macromolecular templates. Such information provides the basis for advancing strategies aimed at controlling dendrimer functionalization, and thus represents enabling technology for tailoring the composition and structure of molecular arrays fashioned on dendrimer templates. Moreover, this information is vital to the proper interpretation of ongoing experiments in which dendrimers sparsely functionalized with reporter groups are used as probes. In this article, we report MALDI-TOF mass spectrometry and EPR spectroscopy of heterogeneously functionalized G(4)-PAMAM dendrimers bearing nitroxide spin-labels.