Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Chem Biol ; 6(3): 234-44, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21090814

RESUMEN

Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.


Asunto(s)
Descubrimiento de Drogas , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Mol Cell ; 14(3): 355-62, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15125838

RESUMEN

Sharply bent DNA is essential for gene regulation in prokaryotes and is a major feature of eukaryotic nucleosomes and viruses. The explanation normally given for these phenomena is that specific proteins sharply bend DNA by application of large forces, while the DNA follows despite its intrinsic inflexibility. Here we show that DNAs that are 94 bp in length-comparable to sharply looped DNAs in vivo-spontaneously bend into circles. Proteins can enhance the stability of such loops, but the loops occur spontaneously even in naked DNA. Random DNA sequences cyclize 10(2)-10(4) times more easily than predicted from current theories of DNA bending, while DNA sequences that position nucleosomes cyclize up to 10(5) times more easily. These unexpected results establish DNA as an active participant in the formation of looped regulatory complexes in vivo, and they point to a need for new theories of DNA bending.


Asunto(s)
ADN/química , ADN/genética , Conformación de Ácido Nucleico , Transcripción Genética/genética , Sitios de Unión/genética , Proteínas de Unión al ADN/química , Peso Molecular , Nucleosomas/genética , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA