Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 55(2): 324-340.e8, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139353

RESUMEN

The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.


Asunto(s)
Tolerancia Inmunológica/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Triptófano/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Indoles/inmunología , Indoles/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Microbiota/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/metabolismo
2.
Trends Biotechnol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39025680

RESUMEN

Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.

3.
Adv Healthc Mater ; 12(14): e2201846, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36308030

RESUMEN

The spatial configuration of cells in the tumor microenvironment (TME) affects both cancer and fibroblast cell phenotypes contributing to the clinical challenge of tumor heterogeneity and therapeutic resistance. This is a particular challenge in stroma-rich pancreatic ductal adenocarcinoma (PDAC). Here, a versatile system is described to study the impact of tissue architecture on cell phenotype using PDAC as a model system. This fully human system encompassing both primary pancreatic stellate cells and primary organoid cells using the TRACER platform to allow the creation of user-defined TME architectures that have been inferred from clinical PDAC samples and are analyzed by CyTOF to characterize cells extracted from the system. High dimensional characterization using CyTOF demonstrates that tissue architecture leads to distinct hypoxia and proliferation gradients. Furthermore, phenotypic markers for both cell types are also graded in ways that cannot be explained by either hypoxia or coculture alone. This demonstrates the importance of using complex models encompassing cancer cells, stromal cells, and allowing control over architecture to explore the impact of tissue architecture on cell phenotype. It is anticipated that this model will help decipher how tissue architecture and cell interactions regulate cell phenotype and hence cellular and tissue heterogeneity.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Técnicas de Cocultivo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Fenotipo , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Tissue Eng Part C Methods ; 27(3): 183-199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33406987

RESUMEN

Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.


Asunto(s)
Genómica , Neoplasias , Epigenómica , Humanos , Metabolómica , Proteómica
5.
Adv Biosyst ; 3(1): e1800174, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32627343

RESUMEN

Brain organoids are self-assembled, three-dimensionally structured tissues that are typically derived from pluripotent stem cells. They are multicellular aggregates that more accurately recapitulate the tissue microenvironment compared to the other cell culture systems and can also reproduce organ function. They are promising models for evaluating drug leads, particularly those that target neurodegeneration, since they are genetically and phenotypically stable over prolonged durations of culturing and they reasonably reproduce critical physiological phenomena such as biochemical gradients and responses by the native tissue to stimuli. Beyond drug discovery, the use of brain organoids could also be extended to investigating early brain development and identifying the mechanisms that elicit neurodegeneration. Herein, the current state of the fabrication and use of brain organoids in drug development and medical research is summarized. Although the use of brain organoids represents a quantum leap over existing investigational tools used by the pharmaceutical industry, they are nonetheless imperfect systems that could be greatly improved through bioengineering. To this end, some key scientific challenges that would need to be addressed in order to enhance the relevance of brain organoids as model tissue are listed. Potential solutions to these challenges, including the use of bioprinting, are highlighted thereafter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA