Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant J ; 117(3): 909-923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953711

RESUMEN

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Latencia en las Plantas/genética , Filogenia , Esporas Fúngicas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol ; 193(3): 2086-2104, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37427787

RESUMEN

The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animales , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Escualeno-Monooxigenasa/metabolismo , Esteroles , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
New Phytol ; 238(2): 654-672, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683399

RESUMEN

Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.


Asunto(s)
Proteínas de Arabidopsis , Bryopsida , Esporas , Tracheophyta , Diterpenos , Germinación , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Arabidopsis/metabolismo , Esporas/metabolismo , Tracheophyta/metabolismo , Bryopsida/metabolismo , Plantas/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología
4.
Plant J ; 102(1): 165-177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31714620

RESUMEN

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.


Asunto(s)
Bryopsida/genética , Transcriptoma , Atlas como Asunto , Bryopsida/metabolismo , Conjuntos de Datos como Asunto , Expresión Génica/genética , Genes de Plantas/genética , Internet , Micorrizas/metabolismo , Transcriptoma/genética
5.
Evol Dev ; 23(3): 137-154, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33428269

RESUMEN

DELLA proteins are master growth regulators that repress responses to a group of plant growth hormones called gibberellins (GAs). Manipulation of DELLA function and signaling was instrumental in the development of high-yielding crop varieties that saved millions from starvation during the "Green Revolution." Despite decades of extensive research, it is still unclear how DELLA function and signaling mechanisms evolved within the land plant lineage. Here, we review current knowledge on DELLA protein function with reference to structure, posttranslational modifications, downstream transcriptional targets, and protein-protein interactions. Furthermore, we discuss older and recent findings regarding the evolution of DELLA signaling within the land plant lineage, with an emphasis on bryophytes, and identify future avenues of research that would enable us to shed more light on the evolution of DELLA signaling. Unraveling how DELLA function and signaling mechanisms have evolved could enable us to engineer better crops in an attempt to contribute to mitigating the effects of global warming and achieving global food security.


Asunto(s)
Embryophyta , Giberelinas , Animales , Embryophyta/genética , Embryophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal
6.
Plant J ; 95(1): 168-182, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681058

RESUMEN

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Asunto(s)
Bryopsida/genética , Conjuntos de Datos como Asunto , Genes de Plantas/genética , Mapeo Cromosómico , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética
7.
New Phytol ; 216(4): 967-975, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28800196

RESUMEN

Macroalgae (seaweeds) are the subject of increasing interest for their potential as a source of valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared with microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of whole-genome sequences and model organisms for the major seaweed groups. This is partly a consequence of specific hurdles related to the large size of these organisms and their slow growth. As a result, this basic scientific field is falling behind, despite the societal and economic importance of these organisms. Here, we argue that sustainable management of seaweed aquaculture requires fundamental understanding of the underlying biological mechanisms controlling macroalgal life cycles - from the production of germ cells to the growth and fertility of the adult organisms - using diverse approaches requiring a broad range of technological tools. This Viewpoint highlights several examples of basic research on macroalgal developmental biology that could enable the step-changes which are required to adequately meet the demands of the aquaculture sector.


Asunto(s)
Acuicultura , Algas Marinas/crecimiento & desarrollo , Biomasa , Conservación de los Recursos Naturales , Estadios del Ciclo de Vida
8.
Biofouling ; 33(5): 410-432, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28508711

RESUMEN

Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Diatomeas/crecimiento & desarrollo , Percepción de Quorum , Navíos , Estrés Fisiológico , Ulva/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Señalización del Calcio/fisiología , Adhesión Celular , Diatomeas/metabolismo , Diatomeas/fisiología , Óxido Nítrico/metabolismo , Polímeros/metabolismo , Esporas/fisiología , Propiedades de Superficie , Ulva/metabolismo , Ulva/fisiología
9.
New Phytol ; 211(3): 940-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27040616

RESUMEN

Armadillo-related proteins regulate development throughout eukaryotic kingdoms. In the flowering plant Arabidopsis thaliana, Armadillo-related ARABIDILLO proteins promote multicellular root branching. ARABIDILLO homologues exist throughout land plants, including early-diverging species lacking true roots, suggesting that early-evolving ARABIDILLOs had additional biological roles. Here we investigated, using molecular genetics, the conservation and diversification of ARABIDILLO protein function in plants separated by c. 450 million years of evolution. We demonstrate that ARABIDILLO homologues in the moss Physcomitrella patens regulate a previously undiscovered inhibitory effect of abscisic acid (ABA) on spore germination. Furthermore, we show that A. thaliana ARABIDILLOs function similarly during seed germination. Early-diverging ARABIDILLO homologues from both P. patens and the lycophyte Selaginella moellendorffii can substitute for ARABIDILLO function during A. thaliana root development and seed germination. We conclude that (1) ABA was co-opted early in plant evolution to regulate functionally analogous processes in spore- and seed-producing plants and (2) plant ARABIDILLO germination functions were co-opted early into both gametophyte and sporophyte, with a specific rooting function evolving later in the land plant lineage.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Bryopsida/metabolismo , Secuencia Conservada , Germinación , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Selaginellaceae/metabolismo , Arabidopsis/efectos de los fármacos , Bryopsida/efectos de los fármacos , Germinación/efectos de los fármacos , Mutación/genética , Semillas/efectos de los fármacos , Selaginellaceae/efectos de los fármacos , Homología de Secuencia de Aminoácido , Esporas/metabolismo
10.
New Phytol ; 211(3): 952-66, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27257104

RESUMEN

Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore- or seed-germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs. Endogenous hormones mediate this decision in response to the environment. Less is known about how spore germination is controlled in earlier-evolving nonseed plants. Here, we present an in-depth analysis of the environmental and hormonal regulation of spore germination in the model bryophyte Physcomitrella patens (Aphanoregma patens). Our data suggest that the environmental signals regulating germination are conserved, but also that downstream hormone integration pathways mediating these responses in seeds were acquired after the evolution of the bryophyte lineage. Moreover, the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed. We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds. This paves the way for future research about how the mechanisms of plant dispersal on land evolved.


Asunto(s)
Bryopsida/embriología , Bryopsida/genética , Redes Reguladoras de Genes , Germinación/genética , Semillas/embriología , Semillas/genética , Ácido Abscísico/biosíntesis , Ácido Abscísico/farmacología , Bryopsida/efectos de los fármacos , Bryopsida/efectos de la radiación , Frío , Diterpenos/farmacología , Diterpenos de Tipo Kaurano/biosíntesis , Ambiente , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/efectos de la radiación , Genes de Plantas , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Calor , Lactonas/farmacología , Luz , Latencia en las Plantas/efectos de los fármacos , Latencia en las Plantas/genética , Latencia en las Plantas/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Esporas/efectos de los fármacos , Esporas/genética , Esporas/efectos de la radiación , Sacarosa/farmacología
11.
New Phytol ; 203(4): 1194-1207, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24902892

RESUMEN

Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Flores/efectos de los fármacos , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
12.
Nat Plants ; 9(4): 535-543, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914897

RESUMEN

DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant's life1-3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8-10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
13.
Planta ; 236(6): 1927-41, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22945313

RESUMEN

ARABIDILLO proteins regulate multicellular root development in Arabidopsis thaliana. Conserved ARABIDILLO homologues are present throughout land plants, even in early-evolving plants that do not possess complex root architecture, suggesting that ARABIDILLO genes have additional functions. Here, we have cloned and characterised ARABIDILLO gene homologues from two early-evolving land plants, the bryophyte Physcomitrella patens and the lycophyte Selaginella moellendorffii. We show that two of the PHYSCODILLO genes (PHYSCODILLO1A and -1B) exist as a tail-to-tail tandem array of two almost identical 12 kb sequences, while a third related gene (PHYSCODILLO2) is located elsewhere in the Physcomitrella genome. Physcomitrella possesses a very low percentage of tandemly arrayed genes compared with the later-evolving plants whose genomes have been sequenced to date. Thus, PHYSCODILLO1A and -1B genes represent a relatively unusual gene arrangement. PHYSCODILLO promoters are active largely in the haploid gametophyte, with additional activity at the foot of the sporophyte. The pattern of promoter activity is uniform in filamentous and leafy tissues, suggesting pleiotropic gene functions and likely functional redundancy: the latter possibility is confirmed by the lack of discernible phenotype in a physcodillo2 deletion mutant. Interestingly, the pattern of PHYSCODILLO promoter activity in female reproductive organs is strikingly similar to that of an Arabidopsis homologue, suggesting co-option of some PHYSCODILLO functions or regulation into both the sporophyte and gametophyte. In conclusion, our work identifies and characterises some of the earliest-evolving land plant ARABIDILLO homologues. We confirm that all land plant ARABIDILLO genes arose from a single common ancestor and suggest that PHYSCODILLO proteins have novel and pleiotropic functions, some of which may be conserved in later-evolving plants.


Asunto(s)
Bryopsida/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Selaginellaceae/genética , Arabidopsis/genética , Secuencia de Bases , Bryopsida/citología , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Datos de Secuencia Molecular , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Selaginellaceae/citología , Selaginellaceae/crecimiento & desarrollo , Alineación de Secuencia , Análisis de Secuencia de ADN , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
14.
Plant Mol Biol ; 75(1-2): 77-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21052782

RESUMEN

ARABIDILLO proteins are F-box-Armadillo (ARM) proteins that regulate root branching in Arabidopsis. Many F-box proteins in plants, yeast and mammals are unstable. In plants, the mechanism for this instability has not been fully investigated. Here, we show that a conserved family of plant ARABIDILLO-related proteins has a unique domain structure consisting of an F-box and leucine-rich repeats (LRRs) followed by ARM-repeats. The LRRs are similar to those found in other plant and animal F-box proteins, including cell cycle proteins and hormone receptors. We demonstrate that the LRRs are required for ARABIDILLO1 function in vivo. ARABIDILLO1 protein is unstable: we show that ARABIDILLO1 protein is associated with ubiquitin and is turned over by the proteasome. Both the F-box and LRR regions of ARABIDILLO1 appear to enable this turnover to occur. Application of known lateral root-regulating signals has no effect on ARABIDILLO1 stability. In addition, plants that lack or overexpress ARABIDILLO proteins respond normally to known lateral root-regulating signals. Thus, we suggest that the signal(s) regulating ARABIDILLO stability in vivo may be either highly specific or novel. The structural conservation between ARABIDILLOs and other plant and animal F-box proteins suggests that the stability of other F-box proteins may be controlled by similar mechanisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Secuencia Conservada/genética , Proteínas F-Box/genética , beta Catenina/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Western Blotting , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Filogenia , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , beta Catenina/química , beta Catenina/metabolismo
16.
Curr Opin Cell Biol ; 16(5): 470-6, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15363795

RESUMEN

Cell adhesion is a basic property of animal cells, but is also present in many other eukaryotes. Did cell adhesion systems arise independently in different eukaryotic groups, or do they share common origins? Recent results show that cell adhesion proteins related to cadherin, IgG-like CAM and C-type lectin are present both in sponges, the most distant animal branch, and in eukaryote groups outside the metazoan lineage, indicating that these forms of adhesion arose prior to animal evolution. Furthermore, proteins containing features of animal adhesion systems, such as Fas-1 and thrombospondin domains, are distributed throughout the eukaryotes and function in cell adhesion.


Asunto(s)
Moléculas de Adhesión Celular/genética , Células Eucariotas/metabolismo , Evolución Molecular , Filogenia , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Eucariotas/citología
17.
Sci Rep ; 10(1): 2614, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054953

RESUMEN

Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.


Asunto(s)
Briófitas/crecimiento & desarrollo , Briófitas/microbiología , Germinación , Percepción de Quorum , Bacterias/aislamiento & purificación , Briófitas/metabolismo , Homoserina/análogos & derivados , Homoserina/metabolismo , Lactonas/química , Lactonas/metabolismo , Esporas/crecimiento & desarrollo , Esporas/metabolismo
18.
Trends Cell Biol ; 13(9): 463-71, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12946625

RESUMEN

Armadillo (Arm) repeat proteins contain tandem copies of a degenerate protein sequence motif that forms a conserved three-dimensional structure. Animal Arm repeat proteins function in various processes, including intracellular signalling and cytoskeletal regulation. A subset of these proteins are conserved across eukaryotic kingdoms, and non-metazoa such as Dictyostelium and Chlamydomonas possess homologues of members of the animal Arm repeat family. Higher plants also possess Arm repeat proteins, which, like their animal counterparts, function in intracellular signalling. Notably, these plant Arm proteins have novel functions. In addition, genome sequencing has identified a plethora of Arm-related proteins in Arabidopsis.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Secuencias Repetitivas de Aminoácido/fisiología , Proteínas de Pez Cebra , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Proteínas Wnt , beta Catenina
19.
Sci Rep ; 9(1): 1983, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760853

RESUMEN

The growing population requires sustainable, environmentally-friendly crops. The plant growth-enhancing properties of algal extracts have suggested their use as biofertilisers. The mechanism(s) by which algal extracts affect plant growth are unknown. We examined the effects of extracts from the common green seaweed Ulva intestinalis on germination and root development in the model land plant Arabidopsis thaliana. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid-insensitive mutant, abi1, showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Elemental analysis showed that Ulva contains high levels of Aluminium ions (Al3+). Ethylene and cytokinin have been suggested to function in Al3+-mediated root growth inhibition: our data suggest that if Ulva Al3+ levels inhibit root growth, this is via a novel mechanism. We suggest algal extracts should be used cautiously as fertilisers, as the inhibitory effects on early development may outweigh any benefits if the concentration of extract is too high.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/crecimiento & desarrollo , Fertilizantes/análisis , Extractos Vegetales/farmacología , Algas Marinas/química , Ulva/química , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Etilenos/metabolismo , Germinación/efectos de los fármacos , Fosfoproteínas Fosfatasas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo
20.
Curr Biol ; 28(18): 2921-2933.e5, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30220504

RESUMEN

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance "green tides." Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage.


Asunto(s)
Evolución Biológica , Genoma , Rasgos de la Historia de Vida , Ulva/genética , Mapeo Cromosómico , Familia de Multigenes , Ulva/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA