Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Glob Chang Biol ; 21(10): 3685-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26089027

RESUMEN

Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches.


Asunto(s)
Sequías , Bosques , Juniperus/fisiología , Pinus/fisiología , Árboles/fisiología , Arizona , Cambio Climático
2.
J Invertebr Pathol ; 123: 25-33, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25219370

RESUMEN

About 20% of bumble bee species are in decline in North America, and the microsporidian pathogen, Nosema bombi, has been correlated with these declines. We conducted a comprehensive survey of N. bombi infections in the bumble bee communities throughout the flight season along an elevation gradient in Northern Arizona. Focusing on two species, Bombus (Pyrobombus) huntii and Bombus (Pyrobombus) centralis, we used a combination of PCR and microscopy to distinguish between sporulating and non/low, sporulating N. bombi infections. Surprisingly high levels of PCR-positive infections with no detectable spore loads were found in B. huntii (31-63%) and B. centralis (56.5-66.5%), while the prevalence of sporulating infections was low (3.0-11.8% and 0-12.9% respectively). We determined the prevalence of sporulating N. bombi infection in six other co-occurring, but rarer, bumble bee species (0-62.5%,), but did not test them using PCR. The prevalence of sporulating N. bombi infections in B. (Bombias) nevadensis was significantly higher than in either B. huntii or B. centralis (29%). The declining bumble bee, Bombus sensu strico occidentalis, had the highest prevalence of sporulating N. bombi infections (62.5%), but we purposely captured very few B. occidentalis because of its declining status. PCR was a more sensitive measure of N. bombi prevalence and revealed that wild bumble bees have a much higher prevalence of N. bombi than has previously been recognized. Microscopy and PCR together provide complementary, not redundant, information that deepens our understanding of the dynamic interactions between N. bombi and their bumble bee hosts.


Asunto(s)
Abejas/microbiología , Nosema/genética , Animales , Arizona , Reacción en Cadena de la Polimerasa , Prevalencia
3.
New Phytol ; 200(2): 413-421, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23772860

RESUMEN

Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented.


Asunto(s)
Juniperus/fisiología , Pinus/fisiología , Estrés Fisiológico , Cambio Climático , Sequías , Ambiente , Geografía , New Mexico , Hojas de la Planta/fisiología , Lluvia , Árboles
4.
PeerJ ; 11: e16145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904844

RESUMEN

Megachilidae is one of the United States' most diverse bee families, with 667 described species in 19 genera. Unlike other bee families, which are primarily ground nesters, most megachilid bees require biotic cavities for nesting (i.e., wood, pithy stems, etc.). For this group, the availability of woody-plant species may be as important as nectar/pollen resources in maintaining populations. We studied Megachilidae biodiversity in the continental United States. We confirmed that the highest species richness of Megachilidae was in the southwestern United States. We examined the relationship between species richness and climate, land cover, tree species richness, and flowering plant diversity. When examining environmental predictors across the conterminous United States, we found that forested habitats, but not tree diversity, strongly predicted Megachilidae richness. Additionally, Megachilidae richness was highest in areas with high temperature and low precipitation, however this was not linearly correlated and strongly positively correlated with flowering plant diversity. Our research suggests that the availability of nesting substrate (forested habitats), and not only flowering plants, is particularly important for these cavity-nesting species. Since trees and forested areas are particularly susceptible to climate change, including effects of drought, fire, and infestations, nesting substrates could become a potential limiting resource for Megachilidae populations.


Asunto(s)
Incendios , Magnoliopsida , Abejas , Animales , Ecosistema , Bosques , Biodiversidad , Árboles
5.
Sci Data ; 10(1): 747, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919303

RESUMEN

Species occurrence data are foundational for research, conservation, and science communication, but the limited availability and accessibility of reliable data represents a major obstacle, particularly for insects, which face mounting pressures. We present BeeBDC, a new R package, and a global bee occurrence dataset to address this issue. We combined >18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned the data using the reproducible BeeBDC R-workflow. Specifically, we harmonised species names (following established global taxonomy), country names, and collection dates and, we added record-level flags for a series of potential quality issues. These data are provided in two formats, "cleaned" and "flagged-but-uncleaned". The BeeBDC package with online documentation provides end users the ability to modify filtering parameters to address their research questions. By publishing reproducible R workflows and globally cleaned datasets, we can increase the accessibility and reliability of downstream analyses. This workflow can be implemented for other taxa to support research and conservation.


Asunto(s)
Abejas , Animales , Edición , Flujo de Trabajo
6.
Ecology ; 103(2): e03598, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34813669

RESUMEN

Bees experience differences in thermal tolerance based on their geographical range; however, there are virtually no studies that examine how overwintering temperatures may influence immature survival rates. Here, we conducted a transplant experiment along an elevation gradient to test for climate-change effects on immature overwinter survival using movement along elevational gradient for a community of 26 cavity-nesting bee species in the family Megachilidae along the San Francisco Peaks, Arizona elevational gradient. In each of three years, we placed nest blocks at three elevations, to be colonized by native Megachilidae. Colonized blocks were then (1) moved to lower (warmer) elevations; (2) moved to higher (cooler) elevations; or (3) left in their natal habitat (no change in temperature). Because Megachilidae occupy high elevations with colder temperatures more than any other family of bees, we predicted that emergence would decrease in nest blocks moved to lower elevations, but that we would find no differences in emergence when nest blocks were moved to higher elevations. We found three major results: (1) Bee species moved to lower (warmer) habitats exhibited a 30% decrease in emergence compared with species moved within their natal habitat. (2) Habitat generalists were more likely than habitat specialists to emerge when moved up or down in elevation regardless of their natal life zones. (3) At our highest elevation treatment, emergence increased when blocks were moved to higher elevations, indicating that at least some Megachilidae species can survive at colder temperatures. Our results suggest that direct effects of warming temperatures will have negative impacts on the overall survival of Megachilidae. Additionally, above the tree line, low availability of wood-nesting resources is a probable limiting factor on bees moving up in elevation.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Arizona , Abejas , Temperatura , Árboles
7.
Insects ; 12(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34940148

RESUMEN

The structural patterns comprising bimodal pollination networks can help characterize plant-pollinator systems and the interactions that influence species distribution and diversity over time and space. We compare network organization of three plant-pollinator communities along the altitudinal gradient of the San Francisco Peaks in northern Arizona. We found that pollination networks become more nested, as well as exhibit lower overall network specialization, with increasing elevation. Greater weight of generalist pollinators at higher elevations of the San Francisco Peaks may result in plant-pollinator communities less vulnerable to future species loss due to changing climate or shifts in species distribution. We uncover the critical, more generalized pollinator species likely responsible for higher nestedness and stability at the higher elevation environment. The generalist species most important for network stability may be of the greatest interest for conservation efforts; preservation of the most important links in plant-pollinator networks may help secure the more specialized pollinators and maintain species redundancy in the face of ecological change, such as changing climate.

8.
Biodivers Data J ; 8: e49285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292276

RESUMEN

BACKGROUND: Here we present a checklist of the bee species found on the C. Hart Merriam elevation gradient along the San Francisco Peaks in northern Arizona. Elevational gradients can serve as natural proxies for climate change, replacing time with space as they span multiple vegetation zones over a short geographic distance. Describing the distribution of bee species along this elevation gradient will help predict how bee communities might respond to changing climate. To address this, we initiated an inventory associated with ecological studies on pollinators that documented bees on the San Francisco Peaks. Sample sites spanned six life zones (vegetation zones) on the San Francisco Peaks from 2009 to 2019. We also include occurrence data from other studies, gathered by querying the Symbiota Collection of Arthropods Network (SCAN) portal covering the San Francisco Peaks region (hereafter referred to as "the Peaks"). NEW INFORMATION: Our checklist reports 359 bee species and morphospecies spanning five families and 46 genera that have been collected in the Peaks region. Prior to our concerted sampling effort there were records for 155 bee species, yet there has not been a complete list of bee species inhabiting the Peaks published to date. Over a 10-year period, we documented an additional 204 bee species inhabiting the Peaks. Our study documents range expansions to northern Arizona for 15 species. The majority of these are range expansions from either southern Arizona, southern Utah, or the Rocky Mountain region of Colorado. Nine species are new records for Arizona, four of which are the southernmost record for that species. An additional 15 species are likely undescribed.

9.
Ecol Appl ; 19(5): 1223-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19688929

RESUMEN

Extreme drought conditions accompanied by rising temperatures have characterized the American Southwest during the past decade, causing widespread tree mortality in piñion-juniper woodlands. Piñon pine (Pinus edulis Engelm.) mortality is linked primarily to outbreaks of the pinyon ips (Ips confusus (Leconte)) precipitated by drought conditions. Although we searched extensively, no biotic agent was identified as responsible for death in Juniperus L. spp. in this study; hence this mortality was due to direct drought stress. Here we examine the relationship between tree abundance and patterns of mortality in three size classes (seedling/sapling, pre-reproductive, reproductive) during the recent extended drought in three regions: southwest Colorado, northern New Mexico, and northern Arizona. Piñon mortality varied from 32% to 65%, and juniper mortality from 3% to 10% across the three sites. In all sites, the greatest piñon mortality was in the larger, presumably older, trees. Using logistic regression models, we examined the influence of tree density and basal area on bark beetle infestations (piñon) and direct drought impacts (juniper). In contrast to research carried out early in the drought cycle by other researchers in Arizona, we did not find evidence for greater mortality of piñon and juniper trees in increasingly high density or basal area conditions. We conclude that the severity of this regional drought has masked density-dependent patterns visible in less severe drought conditions. With climate projections for the American Southwest suggesting increases in aridity and rising temperatures, it is critical that we expand our understanding of stress responses expected in widespread piñon-juniper woodlands.


Asunto(s)
Sequías , Juniperus/fisiología , Pinus/fisiología , Arizona , Colorado , New Mexico , Densidad de Población , Análisis de Regresión , Árboles/fisiología
10.
PeerJ ; 7: e7867, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632853

RESUMEN

BACKGROUND: Bees and flies are the two most dominant pollinator taxa in mountain environments of the Southwest USA. Communities of both taxa change dramatically along elevation gradients. We examined whether bee and fly traits would also change along elevation gradients and if so, do they change in a predictable way related to a decrease in temperature as elevation increases. METHODS: We used insect body size and darkness traits as proxies for energetic requirements and indicators of cold tolerance in order to assess patterns of bee and fly community trait differences along an elevation gradient. We examined 1,922 individuals of bees and flies sampled along an elevation gradient ranging from 2,400 meters to 3,200 meters and from 9.6 °C to 5.2 °C mean annual temperature. We examined bees and flies separately using community weighted means (site-level trait values weighted by species abundance) and estimates of environmental filtering (quantified as the inverse of the standardized range of trait values). RESULTS: Bees and flies exhibited two somewhat distinct patterns; (1) Community weighted mean body volume and darkness of bees increased sharply at the highest elevation, and the intensity of environmental filtering also increased with elevation. This was due to both a change among bee populations within a species as well as species replacement at the highest elevation. (2) Community weighted mean body volume and darkness of flies also increased moderately with increasing elevation, but did not exhibit patterns of significant environmental filtering. In fact, the intensity of environmental filtering as indicated by the range of fly body volume weakened with elevation. CONCLUSION: The increase in filter intensity at high elevations exhibited by bees suggests a significant limitation on the breadth of viable functional strategies for coping with extreme cold, at least within this regional species pool. Flies, on the other hand, do not appear to be limited by high elevations, indicating that the shift from bee to fly dominance at high elevations may be due, at least in part, to greater environmental constraints on bee adaptation to colder environments.

11.
PLoS One ; 14(6): e0217198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31188862

RESUMEN

Insect pollinator communities are thought to transition from bee-dominated communities at low elevations to fly-dominated communities at high elevations. We predicted that increased tree canopy cover and a subsequent decrease in meadows and flowering plants would limit bees but not flies at higher elevations. We tested and supported this prediction by examining changes in both abundance and species richness for 128 bee species and 96 fly species at key points along an elevational gradient in Northern Arizona represented by distinct vegetation life zones. In addition to an increase in fly species and abundance relative to bees with increasing elevation, there were changes in community structure). To better understand factors that might influence this transition we examined how tree canopy cover changed along the elevational gradient and how this influenced the change in insect pollinator communities. While bee communities were progressively divergent between forest and meadow habitats with increasing elevation and tree canopy cover, there was no significant pattern with flies between meadow and forest habitats. However, fly abundance did increase with increasing elevation relative to bees. Along a comparable elevational gradient on an adjacent mountain with no tree canopy cover (i.e., a fire burned mountain), the bee-to-fly transition did not occur; bees persisted as the dominant pollinator into the highest life zone. This suggests that tree canopy cover can in part explain the transition from bee-to fly-dominated communities. In conclusion, this is the first study in North America to document a bee-fly transition for both abundance and species richness and show that tree canopy cover may play a role in determining pollinator community composition, by restricting bees to open meadow habitats.


Asunto(s)
Abejas/fisiología , Dípteros/fisiología , Árboles/fisiología , Animales , Arizona , Bosques , Polinización , Dinámica Poblacional
12.
PeerJ ; 7: e8086, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31788358

RESUMEN

Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a "vast hidden treasure trove" of biodiversity -95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation's decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research.

13.
Front Plant Sci ; 10: 132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833952

RESUMEN

Worldwide, trees are confronting increased temperature and aridity, exacerbating susceptibility to herbivory. Long-term studies comparing patterns of plant performance through drought can help identify variation among and within populations in vulnerability to climate change and herbivory. We use long-term monitoring data to examine our overarching hypothesis that the negative impacts of poor soil and herbivore susceptibility would be compounded by severe drought. We studied pinyon pine, Pinus edulis, a widespread southwestern tree species that has suffered extensive climate-change related mortality. We analyzed data on mortality, growth, male reproduction, and herbivory collected for 14-32 years in three areas with distinct soil-types. We used standardized precipitation-evapotranspiration index (SPEI) as a climate proxy that summarizes the impacts of drought due to precipitation and temperature variation on semi-arid forests. Several key findings emerged: (1) Plant performance measurements did not support our hypothesis that trees growing in stressful, coarse-textured soils would suffer more than trees growing in finer-textured soils. Stem growth at the area with coarse, young cinder soils (area one) responded only weakly to drought, while stem growth on more developed soils with sedimentary (area two) and volcanic (area three) substrates, was strongly negatively affected by drought. Male reproduction declined less with drought at area one and more at areas two and three. Overall mortality was 30% on coarse cinder soils (area one) and averaged 55% on finer soil types (areas two and three). (2) Although moth herbivore susceptible trees were hypothesized to suffer more with drought than moth resistant trees, the opposite occurred. Annual stem growth was negatively affected by drought for moth resistant trees, but much less strongly for moth susceptible trees. (3) In contrast to our hypothesis, moths declined with drought. Overall, chronically water-stressed and herbivore-susceptible trees had smaller declines in performance relative to less-stressed trees during drought years. These long-term findings support the idea that stressed trees might be more resistant to drought since they may have adapted or acclimated to resist drought-related mortality.

14.
Front Plant Sci ; 9: 1831, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619404

RESUMEN

Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.

15.
Biodivers Data J ; (6): e29081, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30305800

RESUMEN

BACKGROUND: Primary biodiversity data records that are open access and available in a standardised format are essential for conservation planning and research on policy-relevant time-scales. We created a dataset to document all known occurrence data for the Federally Endangered Poweshiek skipperling butterfly [Oarisma poweshiek (Parker, 1870; Lepidoptera: Hesperiidae)]. The Poweshiek skipperling was a historically common species in prairie systems across the upper Midwest, United States and Manitoba, Canada. Rapid declines have reduced the number of verified extant sites to six. Aggregating and curating Poweshiek skipperling occurrence records documents and preserves all known distributional data, which can be used to address questions related to Poweshiek skipperling conservation, ecology and biogeography. Over 3500 occurrence records were aggregated over a temporal coverage from 1872 to present. Occurrence records were obtained from 37 data providers in the conservation and natural history collection community using both "HumanObservation" and "PreservedSpecimen" as an acceptable basisOfRecord. Data were obtained in different formats and with differing degrees of quality control. During the data aggregation and cleaning process, we transcribed specimen label data, georeferenced occurrences, adopted a controlled vocabulary, removed duplicates and standardised formatting. We examined the dataset for inconsistencies with known Poweshiek skipperling biogeography and phenology and we verified or removed inconsistencies by working with the original data providers. In total, 12 occurrence records were removed because we identified them to be the western congener Oarisma garita (Reakirt, 1866). This resulting dataset enhances the permanency of Poweshiek skipperling occurrence data in a standardised format. NEW INFORMATION: This is a validated and comprehensive dataset of occurrence records for the Poweshiek skipperling (Oarisma poweshiek) utilising both observation and specimen-based records. Occurrence data are preserved and available for continued research and conservation projects using standardised Darwin Core formatting where possible. Prior to this project, much of these occurrence records were not mobilised and were being stored in individual institutional databases, researcher datasets and personal records. This dataset aggregates presence data from state conservation agencies, natural heritage programmes, natural history collections, citizen scientists, researchers and the U.S. Fish & Wildlife Service. The data include opportunistic observations and collections, research vouchers, observations collected for population monitoring and observations collected using standardised research methodologies. The aggregated occurrence records underwent cleaning efforts that improved data interoperablitity, removed transcription errors and verified or removed uncertain data. This dataset enhances available information on the spatiotemporal distribution of this Federally Endangered species. As part of this aggregation process, we discovered and verified Poweshiek skipperling occurrence records from two previously unknown states, Nebraska and Ohio.

16.
Zootaxa ; 4247(1): 73-77, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28610091

RESUMEN

The Lepidoptera of North America Network, or LepNet, is a digitization effort recently launched to mobilize biodiversity data from 3 million specimens of butterflies and moths in United States natural history collections (http://www.lep-net.org/). LepNet was initially conceived as a North American effort but the project seeks collaborations with museums and other organizations worldwide. The overall goal is to transform Lepidoptera specimen data into readily available digital formats to foster global research in taxonomy, ecology and evolutionary biology.


Asunto(s)
Lepidópteros , Animales , Biodiversidad , Mariposas Diurnas , Museos , América del Norte , Estados Unidos
17.
Oecologia ; 94(4): 496-502, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28313989

RESUMEN

We examined the deme-formation hypothesis, which states that sessile herbivores on long-lived hosts become locally adapted to the defensive phenotypes of individual trees. We showed a five-fold increase in resistance by individual pinyon pines (Pinus edulis) to the pinyon pine needle scale (Matsucoccus acalyptus). Although such variation could represent a significant selection pressure favoring deme formation, two lines of evidence led to rejection of the hypothesis. First, there were no significant differences in mortality among scale populations in a reciprocal transfer experiment. Second, a seven-year experiment showed that mortality of newly founded, incipient scale populations was similar to established scale populations. While our experiments fail to support the deme-formation hypothesis, they do demonstrate significant variation in the resistance traits of a natural tree population. Although we feel that demeformation is still probable in this system, it is likely to occur on a larger geographic scale than individual trees as proposed by Edmunds and Alstad.

18.
Oecologia ; 130(1): 78-87, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28547028

RESUMEN

Chronic herbivory by the stem-boring moth (Dioryctria albovittella) alters the sexual expression of a monoecious tree, pinyon pine (Pinus edulis) by reducing female function and increasing male function. Observations and long-term moth removal experiments show that 55% of susceptible trees can lose all female function. Moth herbivory has little effect on male function in young trees, but has an important effect on older trees, where moth-susceptible trees produced 1.5 times more pollen than moth-resistant trees. Susceptible trees were 6.5 times more likely to exhibit male-only function than either resistant trees or susceptible trees that have had their moths experimentally removed. This herbivore-induced sex change is caused primarily by differential moth attack and the resulting mortality of the shoots that bear female reproductive structures. Moth attack rates were positively correlated with individual stem biomass (female stems >non-reproductive stems >male stems). Moth attack also increased conelet abortion on unattacked shoots, indicating that moths indirectly reduce female function. Moth-induced altering of sexual function is also expressed at the population level. Male function is relatively greater in stands with high moth densities on stressful soils than in stands with few moths. Under certain conditions, sexual selection theory suggests that the negative effects on female function could be overcome with greater investment in male function. Because susceptible trees produce large amounts of pollen and are more abundant than moth-resistant trees, frequency-dependent selection may counteract selection against susceptible genotypes. Plant-herbivore interaction studies typically examine negative impacts of herbivory on female function, but not positive effects on male function. Here we demonstrate that herbivory may have important effects on the evolutionary ecology of pinyon by both promoting male function and depressing female function.

19.
Oecologia ; 108(4): 714-722, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307806

RESUMEN

We studied the relationship between variation in age and shoot characteristics of the host plant Salix exigua Nuttall (coyote or sandbar willow) and the attack and survival of Euura sp. (an unnamed leaf-midrib galling sawfly). Variation in shoot characteristics resulted from reduced growth as willow ramets aged. Mean shoot length per ramet and mean longest leaf length per shoot decreased by 95% and 50% respectively between 1- and 9-year-old willow ramets. All measured shoot characteristics-shoot length, longest leaf length, number of leaves per shoot, and mean internode length-were significantly negatively correlated with ramet age (r 2 ranged from -0.23 to -0.41). Correlations between shoot characteristics were highly positive, indicating that plants also grew in a strongly integrated fashion (r 2 ranged from 0.54 to 0.85). Four hypotheses were examined to explain sawfly attack patterns. The host-plant hypothesis was supported in explaining enhanced larval sawfly survival through reduced plant resistance. As willow ramets aged, the probability of Euura sp. attack decreased over 10-fold, from 0.315 on 1-year-old ramets to 0.024 on 2- to 9-year-old ramets. As shoot length increased, the probability of sawfly attack increased over 100-fold, from 0.007 on shoots <100 mm, to 0.800 on shoots in the 1001-1100 mm shoot length class. These attack patterns occurred even though 1-year-old ramets and shoots >500 mm each represented less than 2% of the total shoots available for oviposition. Host plant induced mortality of the egg/early instar stage decreased by 50% on longer leaves and was the most important factor determining survival differences between vigorous and non-vigorous hosts. Sawfly attack was not determined by the resource distribution hypothesis. Although shoots <200 mm contained 82% of the total leaves available, they contained only 43% of the galls initiated. The attack pattern also was not explained by the gall volume hypothesis. Although gall volume increased on longer shoots, there was no significant variation in mid or late instar mortality over shoot length, as would be expected if food resources within smaller galls were limited. The natural enemy attack hypothesis could not explain the pattern of oviposition since predation was greater on longer shoots and leaves. In addition, larval survival was related to oviposition behavior. Due to a 69% reduction in late instar death and an 83% reduction in parasitism, survival of progeny in galls initiated close to the petiole base was 2.8 times greater than in galls initiated near the leaf tip. A 75% reduction in gall volume over this range of gall positions may account for the observed increases in late instar mortality and parasitism.

20.
Proc Natl Acad Sci U S A ; 102(42): 15144-8, 2005 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-16217022

RESUMEN

Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.


Asunto(s)
Clima , Desastres , Calor , Árboles/fisiología , Ecosistema , Sudoeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA