Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 191(3): 850-854, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515361

RESUMEN

We report a boy with typical clinical features of SHORT syndrome alongside a significant microcephaly and severe developmental delay associated with a de novo single nucleotide missense DNA variant resulting in a single amino acid change in codon 486 of the PIK3R1 gene (PIK3R1 c.1456G>A (p.Ala486Thr)). Our report strikingly coincides with another recently published case from Brazil, describing a 23-year-old woman with the same de novo PIK3R1 DNA variant, who also exhibits SHORT syndrome with severe secondary microcephaly and intellectual disability. On review of the literature, we have identified further cases of PIK3R1-related SHORT Syndrome with a similar phenotype. We note all these cases (including ours) have variants located in the -inter SH2 domain (iSH2); we speculate that pathogenic iSH2 located PIK3R1 variants are associated with a different and otherwise unreported clinical picture of SHORT syndrome that presents with microcephaly and/or significant developmental delay/intellectual disability. The pathogenic mechanism of why these variants apparently lead to a different clinical picture of SHORT syndrome remains unknown.


Asunto(s)
Hipercalcemia , Discapacidad Intelectual , Microcefalia , Nefrocalcinosis , Humanos , Niño , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Fenotipo , Factores de Transcripción/genética , Discapacidades del Desarrollo/genética
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047575

RESUMEN

Fetal alcohol spectrum disorder (FASD) encompasses neurodevelopmental disabilities and physical birth defects associated with prenatal alcohol exposure. Previously, we attempted to identify epigenetic biomarkers for FASD by investigating the genome-wide DNA methylation (DNAm) profiles of individuals with FASD compared to healthy controls. In this study, we generated additional gene expression profiles in a subset of our previous FASD cohort, encompassing the most severely affected individuals, to examine the functional integrative effects of altered DNAm status on gene expression. We identified six differentially methylated regions (annotated to the SEC61G, REEP3, ZNF577, HNRNPF, MSC, and SDHAF1 genes) associated with changes in gene expression (p-value < 0.05). To the best of our knowledge, this study is the first to assess whole blood gene expression and DNAm-gene expression associations in FASD. Our results present novel insights into the molecular footprint of FASD in whole blood and opens opportunities for future research into multi-omics biomarkers for the diagnosis of FASD.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Trastornos del Espectro Alcohólico Fetal/genética , Efectos Tardíos de la Exposición Prenatal/genética , Fenotipo , Metilación de ADN , Biomarcadores , Canales de Translocación SEC/genética
3.
Hum Mutat ; 43(8): 1082-1088, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266245

RESUMEN

The ACMG framework for variant interpretation is well-established and widely used. Although formal guidelines have been published on the establishment of the gene-disease relationships as well, these are not nearly as widely acknowledged or utilized, and implementation of these guidelines is lagging. In addition, for many genes so little information is available that the framework cannot be used in sufficient detail. In this manuscript, we highlight the importance of distinguishing between phenotype-first and genotype-first gene-disease relationships. We discuss the approaches currently available to establish gene-disease relationships and suggest a checklist to assist in evaluating gene-disease relationships for genes with very little available information. Several real-life examples from clinical practice are given to illustrate the importance of a thorough thought process on gene-disease relationships. We hope that these considerations and the checklist will provide help for clinicians and clinical scientists faced which variants in genes without robustly ascertained gene-disease relationships.


Asunto(s)
Enfermedades Raras , Humanos , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
4.
Mov Disord ; 37(11): 2197-2209, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054588

RESUMEN

BACKGROUND AND OBJECTIVE: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. METHODS: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. RESULTS: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. CONCLUSIONS: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Distonía , Trastornos Distónicos , Trastornos del Movimiento , Niño , Humanos , Hipercinesia , Trastornos del Movimiento/genética , Trastornos del Movimiento/diagnóstico , Trastornos Distónicos/genética , Corea/diagnóstico , Corea/genética , Proteínas del Tejido Nervioso , Factores de Transcripción Forkhead , Hidrolasas Diéster Fosfóricas , ATPasa Intercambiadora de Sodio-Potasio , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética
5.
Am J Hum Genet ; 100(1): 105-116, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27939639

RESUMEN

Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs∗8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficiency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Blefaroptosis/genética , Genes Dominantes/genética , Histona Acetiltransferasas/metabolismo , Discapacidad Intelectual/genética , Mutación , Proteínas Nucleares/genética , Acetilación , Adulto , Blefarofimosis/genética , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Proteínas de Unión al ADN , Femenino , Mutación del Sistema de Lectura , Haploinsuficiencia/genética , Humanos , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/genética , Hipotonía Muscular/genética , Fenotipo , Síndrome
6.
Am J Hum Genet ; 100(2): 281-296, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132690

RESUMEN

EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.


Asunto(s)
Anomalías Musculoesqueléticas/genética , N-Acetilglucosaminiltransferasas/genética , Osteocondrodisplasias/genética , Alelos , Línea Celular , Línea Celular Tumoral , Condroitín/sangre , Condroitín/orina , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Glicosaminoglicanos/metabolismo , Humanos , Anomalías Musculoesqueléticas/diagnóstico , Mutación Missense , Osteocondrodisplasias/diagnóstico , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética
7.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710489

RESUMEN

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Asunto(s)
Predisposición Genética a la Enfermedad , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Tubulina (Proteína)/genética , Niño , Preescolar , Codón/genética , Epigénesis Genética/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Trastornos del Neurodesarrollo/fisiopatología
8.
Am J Hum Genet ; 98(1): 202-9, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26708751

RESUMEN

Ion channel proteins are required for both the establishment of resting membrane potentials and the generation of action potentials. Hundreds of mutations in genes encoding voltage-gated ion channels responsible for action potential generation have been found to cause severe neurological diseases. In contrast, the roles of voltage-independent "leak" channels, important for the establishment and maintenance of resting membrane potentials upon which action potentials are generated, are not well established in human disease. UNC80 is a large component of the NALCN sodium-leak channel complex that regulates the basal excitability of the nervous system. Loss-of-function mutations of NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF). We report four individuals from three unrelated families who have homozygous missense or compound heterozygous truncating mutations in UNC80 and persistent hypotonia, encephalopathy, growth failure, and severe intellectual disability. Compared to control cells, HEK293T cells transfected with an expression plasmid containing the c.5098C>T (p.Pro1700Ser) UNC80 mutation found in one individual showed markedly decreased NALCN channel currents. Our findings demonstrate the fundamental significance of UNC80 and basal ionic conductance to human health.


Asunto(s)
Alelos , Encefalopatías/genética , Proteínas Portadoras/genética , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , Mutación , Adolescente , Niño , Preescolar , Femenino , Humanos , Índice de Severidad de la Enfermedad
9.
Genet Med ; 21(9): 2059-2069, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30923367

RESUMEN

PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Factores de Transcripción/genética , Adolescente , Adulto , Alelos , Trastorno Autístico/genética , Trastorno Autístico/patología , Niño , Preescolar , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Microcefalia/patología , Mutación Missense/genética , Adulto Joven
10.
Am J Med Genet A ; 179(8): 1498-1506, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31090205

RESUMEN

Stickler syndrome (SS) is characterized by ophthalmic, articular, orofacial, and auditory manifestations. SS is usually autosomal dominantly inherited with variants in COL2A1 or COL11A1. Recessive forms are rare but have been described with homozygous variants in COL9A1, COL9A2, and COL9A3 and compound heterozygous COL11A1 variants. This article expands phenotypic descriptions in recessive SS due to variants in genes encoding Type IX collagen. Clinical features were assessed in four families. Genomic DNA samples derived from venous blood were collected from family members. Six affected patients were identified from four pedigrees with variants in COL9A1 (one family, one patient), COL9A2 (two families, three patients), and COL9A3 (one family, two patients). Three variants were novel. All patients were highly myopic with congenital megalophthalmos and abnormal, hypoplastic vitreous gel, and all had sensorineural hearing loss. One patient had severe arthropathy. Congenital megalophthalmos and myopia are common to dominant and recessive forms of SS. Sensorineural hearing loss is more common and severe in recessive SS. We suggest that COL9A1, COL9A2, and COL9A3 be added to genetic screening panels for patients with congenital hearing loss. Although recessive SS is rare, early diagnosis would have a high impact for children with potentially dual sensory impairment, as well as identifying risk to future children.


Asunto(s)
Artritis/genética , Colágeno Tipo IX/genética , Enfermedades del Tejido Conjuntivo/genética , Pérdida Auditiva Sensorineural/genética , Homocigoto , Mutación , Desprendimiento de Retina/genética , Adolescente , Adulto , Artritis/diagnóstico , Artritis/patología , Niño , Preescolar , Enfermedades del Tejido Conjuntivo/diagnóstico , Enfermedades del Tejido Conjuntivo/patología , Femenino , Expresión Génica , Genes Recesivos , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/patología , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Fenotipo , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/patología , Factores de Riesgo , Índice de Severidad de la Enfermedad
11.
J Med Genet ; 55(2): 104-113, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097605

RESUMEN

BACKGROUND: De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. OBJECTIVES: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. METHODS: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. RESULTS: We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. CONCLUSION: We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.


Asunto(s)
Proteínas de Unión al ADN/genética , Cara/anomalías , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Anomalías del Ojo/genética , Femenino , Estudios de Asociación Genética , Humanos , Recién Nacido , Hipotonía Muscular/etiología , Hipotonía Muscular/genética , Embarazo , Homología Estructural de Proteína , Síndrome , Factores de Transcripción/química
13.
J Hepatol ; 64(4): 974-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26658685

RESUMEN

Non-cirrhotic portal hypertension is characterized by histopathological abnormalities in the liver, mostly affecting small intrahepatic portal veins that cause portal hypertension in the absence of cirrhosis. It can be secondary to coagulation disorders or toxic agents. However, most cases are idiopathic non-cirrhotic portal hypertension (INCPH) and familial cases are rare. We report a family in which a father and three of his four children conceived with three different mothers are affected by INCPH. Whole exome and Sanger sequencing showed the father to have a de novo single nucleotide substitution c.1348G>C in the KCNN3 gene that was transmitted to all three of his affected offspring. The KCNN3 gene encodes small conductance calcium-activated potassium (SK) channel 3. SK channels are involved in the regulation of arterial and venous vascular tone by causing smooth muscle relaxation on activation. No data exist on the expression and function of SK channels in portal veins. The autosomal dominant inheritance in this unique pedigree and the single de novo mutation identified, strongly suggests that KCNN3 mutations have a pathogenetic role in INCPH.


Asunto(s)
Hipertensión Portal/genética , Mutación , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Adulto , Niño , Preescolar , Exoma , Femenino , Humanos , Lactante , Hígado/patología , Masculino
14.
Am J Med Genet A ; 170A(2): 504-509, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26554871

RESUMEN

Interstitial deletions encompassing the 3q26.2 region are rare. Only one case-report was published this far describing a patient with an interstitial deletion of 3q26.2 (involving the MDS1-EVI1 complex (MECOM)) and congenital thrombocytopenia. In this report we describe a case of a neonate with congenital thrombocytopenia and a constitutional 4.52 Mb deletion of 3q26.2q26.31 including TERC and the first 2 exons of MECOM, involving MDS1 but not EVI1. The deletion was demonstrated by array-CGH on lymphocytes. Our report confirms that congenital thrombocytopenia can be due to a constitutional deletion of 3q26.2 involving MECOM. We suggest that in case of unexplained neonatal thrombocytopenia, with even just slight facial dysmorphism, DNA microarray on peripheral blood should be considered early in the diagnostic work-up.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Proteínas de Unión al ADN/genética , Proto-Oncogenes/genética , Trombocitopenia/congénito , Trombocitopenia/genética , Factores de Transcripción/genética , Adulto , Hibridación Genómica Comparativa , Femenino , Humanos , Recién Nacido , Proteína del Locus del Complejo MDS1 y EV11 , Masculino , Fenotipo , Trombocitopenia/diagnóstico
15.
Am J Med Genet A ; 170A(2): 510-514, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26601923

RESUMEN

We report on a boy with a neonatal short limb skeletal dysplasia with serious medical complications, associated with one intragenic and one complete deletion of XYLT1. XYLT1 mutations have recently been reported as causative in recessive Desbuquois skeletal dysplasia (DBSD), but the skeletal features in our patient do not fit this diagnosis. It is possible that the phenotype of XYLT1 mutations extends to more aspecific types of short limb skeletal dysplasias and not to DBSD alone.


Asunto(s)
Extremidades/embriología , Anomalías Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Pentosiltransferasa/genética , Eliminación de Secuencia/genética , Extremidades/patología , Humanos , Recién Nacido , Masculino , Anomalías Musculoesqueléticas/diagnóstico , Osteocondrodisplasias/diagnóstico , Fenotipo , UDP Xilosa Proteína Xilosiltransferasa
16.
Am J Med Genet A ; 170A(4): 1040-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26789019

RESUMEN

Trisomy 4 mosaicism in liveborns is very rare. We describe a 17-month-old girl with trisomy 4 mosaicism. Clinical findings in this patient are compared to previously reported patients. Based on the few descriptions available in the literature the common phenotype of trisomy 4 mosaicism seems to consist of IUGR, low birth weight/length/OFC, congenital heart defects, characteristic thumb anomalies (aplasia/hypoplasia), skin abnormalities (hypo-/hyperpigmentation), several dysmorphic features, and likely some degree of intellectual disability. When trisomy 4 mosaicism is suspected clinicians should be aware that a normal karyotype in lymphocytes does not exclude mosaicism for trisomy 4. This report contributes to a further delineation of the phenotype associated with trisomy 4 mosaicism.


Asunto(s)
Cromosomas Humanos Par 4 , Mosaicismo , Fenotipo , Trisomía , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Hibridación Genómica Comparativa , Facies , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Cariotipo
17.
Birth Defects Res A Clin Mol Teratol ; 106(7): 573-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26991659

RESUMEN

BACKGROUND: Recent studies reported an association between prenatal propylthiouracil exposure and birth defects, including abnormal arrangement across the left-right body axis, suggesting an association with heterotaxy syndrome. METHODS: This case-control and case-finding study used data from 1981 to 2013 from the EUROCAT birth defect registry in the Northern Netherlands. First, we explored prenatal exposures in heterotaxy syndrome (cases) and Down syndrome (controls). Second, we describe the specific birth defects in offspring of mothers using propylthiouracil (PTU) prenatally. RESULTS: A total of 66 cases with heterotaxy syndrome (incidence 12.1 per 100,000 pregnancies) and 783 controls with Down syndrome (143.3 per 100,000 pregnancies) were studied. No differences in intoxication use during pregnancy were found between cases and controls, including smoking (28.0% vs. 22.7%; p = 0.40), alcohol (14.0% vs. 26.9%; p = 0.052), and recreational drugs (0 vs. 0.3%; p = 1.00). We found an association between heterotaxy syndrome and prenatal drug exposure to follitropin-alfa (5.6% vs. 1.1%; p = 0.04), and drugs used in nicotine dependence (3.7% vs. 0.2%; p = 0.02). Five mothers used PTU during pregnancy and gave birth to a child with trisomy 18, renal abnormalities, or hypospadias and cardiac defects. CONCLUSION: This study identified follitropin-alfa and drugs used in nicotine dependence as possible teratogens of heterotaxy syndrome. Our data suggest the possibility that there is an increased risk of birth defects (including renal, urological, and cardiac abnormalities) in children born among mothers taking PTU prenatally, but not for heterotaxy syndrome. Birth Defects Research (Part A) 106:573-579, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hormona Folículo Estimulante Humana/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Sistema de Registros , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Estudios de Casos y Controles , Síndrome de Down/inducido químicamente , Síndrome de Down/epidemiología , Femenino , Hormona Folículo Estimulante Humana/administración & dosificación , Síndrome de Heterotaxia/inducido químicamente , Síndrome de Heterotaxia/epidemiología , Humanos , Drogas Ilícitas/efectos adversos , Países Bajos/epidemiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Fumar/efectos adversos
18.
Genet Med ; 17(11): 843-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25719457

RESUMEN

Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as "COL4A1 mutation-related disorders." Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.


Asunto(s)
Colágeno Tipo IV/genética , Estudios de Asociación Genética , Mutación , Fenotipo , Alelos , Segmento Anterior del Ojo/anomalías , Encéfalo/patología , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/genética , Estudios de Cohortes , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo , Familia , Orden Génico , Sitios Genéticos , Genotipo , Humanos , Leucomalacia Periventricular/diagnóstico , Leucomalacia Periventricular/genética , Imagen por Resonancia Magnética/métodos , Linaje , Porencefalia/diagnóstico , Porencefalia/genética
19.
Am J Med Genet A ; 167A(9): 1983-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26033782

RESUMEN

Robin sequence (RS) can be defined as the combination of micrognathia and upper airway obstruction/glossoptosis causing neonatal respiratory problems, with or without a cleft palate and either isolated or non-isolated. Pathogenesis varies widely. We hypothesize that optimal treatment depends on pathogenesis and therefore patients should be stratified according to diagnosis. Here, we evaluate diagnoses and (presumed) pathogeneses in an RS cohort. Medical records of all RS patients presenting between 1995-2013 in three academic hospitals were evaluated. Four clinical geneticists re-evaluated all information, including initial diagnosis. Diagnoses were either confirmed, considered uncertain, or rejected. If uncertain or rejected, patients were re-evaluated. Subsequent results were re-discussed and a final conclusion was drawn. We included 191 RS patients. After re-evaluation and changing initial diagnoses in 48 of the 191 patients (25.1%), 37.7% of the cohort had isolated RS, 8.9% a chromosome anomaly, 29.3% a Mendelian disorder, and 24.1% no detectable cause. Twenty-two different Mendelian disorders were diagnosed, of which Stickler syndrome was most frequent. Stratification of diagnoses according to (presumed) pathogenic mechanism in 73 non-isolated patients with reliable diagnoses showed 43.9% to have a connective tissue dysplasia, 5.5% a neuromuscular disorder, 47.9% a multisystem disorder, and 2.7% an unknown mechanism. We diagnosed more non-isolated RS patients compared to other studies. Re-evaluation changed initial diagnosis in a quarter of patients. We suggest standardized re-evaluation of all RS patients. Despite the relatively high diagnostic yield pathogenesis could be determined in only 59.7% (71/119), due to limited insight in pathogenesis in diagnosed entities. Further studies into pathogenesis of entities causing RS are indicated.


Asunto(s)
Síndrome de Pierre Robin/etiología , Síndrome de Pierre Robin/patología , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/patología , Artritis/etiología , Artritis/patología , Fisura del Paladar/patología , Enfermedades del Tejido Conjuntivo/etiología , Enfermedades del Tejido Conjuntivo/patología , Femenino , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Micrognatismo/etiología , Micrognatismo/patología , Desprendimiento de Retina/etiología , Desprendimiento de Retina/patología
20.
Hum Mutat ; 35(5): 521-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24599544

RESUMEN

Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD.


Asunto(s)
Ano Imperforado/genética , Displasia Ectodérmica/genética , Trastornos del Crecimiento/genética , Pérdida Auditiva Sensorineural/genética , Hipotiroidismo/genética , Discapacidad Intelectual/genética , Mutación/genética , Nariz/anomalías , Enfermedades Pancreáticas/genética , Ubiquitina-Proteína Ligasas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Ano Imperforado/patología , Bases de Datos Genéticas , Enanismo/genética , Enanismo/patología , Displasia Ectodérmica/patología , Trastornos del Crecimiento/patología , Pérdida Auditiva Sensorineural/patología , Humanos , Hipotiroidismo/patología , Discapacidad Intelectual/patología , Nariz/patología , Enfermedades Pancreáticas/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA