Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(10): e3001826, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256614

RESUMEN

Human endogenous retrovirus (HERV) transcripts are known to be highly expressed in cancers, yet their activity in nondiseased tissue is largely unknown. Using the GTEx RNA-seq dataset from normal tissue sampled at autopsy, we characterized individual expression of the recent HERV-K (HML-2) provirus group across 13,000 different samples of 54 different tissues from 948 individuals. HML-2 transcripts could be identified in every tissue sampled and were elevated in the cerebellum, pituitary, testis, and thyroid. A total of 37 different individual proviruses were expressed in 1 or more tissues, representing all 3 LTR5 subgroups. Nine proviruses were identified as having long terminal repeat (LTR)-driven transcription, 7 of which belonged to the most recent LTR5HS subgroup. Proviruses of different subgroups displayed a bias in tissue expression, which may be associated with differences in transcription factor binding sites in their LTRs. Provirus expression was greater in evolutionarily older proviruses with an earliest shared ancestor of gorilla or older. HML-2 expression was significantly affected by biological sex in 1 tissue, while age and timing of death (Hardy score) had little effect. Proviruses containing intact gag, pro, and env open reading frames (ORFs) were expressed in the dataset, with almost every tissue measured potentially expressing at least 1 intact ORF (gag).


Asunto(s)
Retrovirus Endógenos , Provirus , Masculino , Humanos , Provirus/genética , Retrovirus Endógenos/genética , Secuencias Repetidas Terminales/genética , Sistemas de Lectura Abierta , Factores de Transcripción/metabolismo
2.
J Virol ; 96(13): e0012222, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35674431

RESUMEN

Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4+ T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites. Here, we report on an efficient method by which HIV-1 proviruses and their sites of integration are amplified and sequenced. Across five HIV-1-positive individuals on clinically effective ART, a median of 41.2% (n = 88 of 209) of amplifications yielded near-full-length proviruses and their 5'-host-virus junctions containing a median of 430 bp (range, 18 to 1,363 bp) of flanking host sequence. Unexpectedly, 29.5% (n = 26 of 88) of the sequenced proviruses had structural asymmetries between the 5' and 3' long terminal repeats (LTRs), commonly in the form of major 3' deletions. Sequence-intact proviruses were detected in 3 of 5 donors, and infected CD4+ T-cell clones were detected in 4 of 5 donors. The accuracy of the method was validated by amplifying and sequencing full-length proviruses and flanking host sequences directly from peripheral blood mononuclear cell DNA. The individual proviral sequencing assay (IPSA) described here can provide an accurate, in-depth, and longitudinal characterization of HIV-1 proviruses that persist on ART, which is important for targeting proviruses for elimination and assessing the impact of interventions designed to eradicate HIV-1. IMPORTANCE The integration of human immunodeficiency virus type 1 (HIV-1) into chromosomal DNA establishes the long-term persistence of HIV-1 as proviruses despite effective antiretroviral therapy (ART). Characterizing proviruses is difficult because of their rarity in individuals on long-term suppressive ART, their highly polymorphic sequences and genetic structures, and the need for efficient amplification and sequencing of the provirus and its integration site. Here, we describe a novel, integrated, two-step method (individual proviral sequencing assay [IPSA]) that amplifies the host-virus junction and the full-length provirus except for the last 69 bp of the 3' long terminal repeat (LTR). Using this method, we identified the integration sites of proviruses, including those that are sequence intact and replication competent or defective. Importantly, this new method identified previously unreported asymmetries between LTRs that have implications for how proviruses are detected and quantified. The IPSA method reported is unaffected by LTR asymmetries, permitting a more accurate and comprehensive characterization of the proviral landscape.


Asunto(s)
VIH-1 , Provirus , Secuencias Repetidas Terminales , Infecciones por VIH/virología , VIH-1/genética , VIH-1/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucocitos Mononucleares/virología , Provirus/genética , Provirus/metabolismo , Secuencias Repetidas Terminales/genética
3.
PLoS Pathog ; 17(4): e1009141, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826675

RESUMEN

HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/virología , Leucocitos Mononucleares/virología , Oncogenes/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , ADN Viral/genética , Humanos , Oncogenes/inmunología , Provirus/genética , Replicación Viral/genética
4.
Proc Natl Acad Sci U S A ; 117(52): 32880-32882, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318172

RESUMEN

In vivo clonal expansion of HIV-infected T cells is an important mechanism of viral persistence. In some cases, clonal expansion is driven by HIV proviral DNA integrated into one of a handful of genes. To investigate this phenomenon in vitro, we infected primary CD4+ T cells with an HIV construct expressing GFP and, after nearly 2 mo of culture and multiple rounds of activation, analyzed the resulting integration site distribution. In each of three replicates from each of two donors, we detected large clusters of integration sites with multiple breakpoints, implying clonal selection. These clusters all mapped to a narrow region within the STAT3 gene. The presence of hybrid transcripts splicing HIV to STAT3 sequences supports a model of LTR-driven STAT3 overexpression as a driver of preferential growth. Thus, HIV integration patterns linked to selective T cell outgrowth can be reproduced in cell culture. The single report of an HIV provirus in a case of AIDS-associated B-cell lymphoma with an HIV provirus in the same part of STAT3 also has implications for HIV-induced malignancy.


Asunto(s)
Proliferación Celular , VIH/fisiología , Provirus/fisiología , Linfocitos T/virología , Integración Viral , Células Cultivadas , Evolución Clonal , ADN Viral/genética , VIH/genética , Humanos , Provirus/genética , Factor de Transcripción STAT3/genética , Linfocitos T/fisiología
5.
Proc Natl Acad Sci U S A ; 116(4): 1337-1346, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30610173

RESUMEN

Human endogenous retrovirus-K (HERV-K) human mouse mammary tumor virus-like 2 (HML-2) is the most recently active endogenous retrovirus group in humans, and the only group with human-specific proviruses. HML-2 expression is associated with cancer and other diseases, but extensive searches have failed to reveal any replication-competent proviruses in humans. However, HML-2 proviruses are found throughout the catarrhine primates, and it is possible that they continue to infect some species today. To investigate this possibility, we searched for gorilla-specific HML-2 elements using both in silico data mining and targeted deep-sequencing approaches. We identified 150 gorilla-specific integrations, including 31 2-LTR proviruses. Many of these proviruses have identical LTRs, and are insertionally polymorphic, consistent with very recent integration. One identified provirus has full-length ORFs for all genes, and thus could potentially be replication-competent. We suggest that gorillas may still harbor infectious HML-2 virus and could serve as a model for understanding retrovirus evolution and pathogenesis in humans.


Asunto(s)
Gorilla gorilla/virología , Pan troglodytes/virología , Animales , Evolución Biológica , Retrovirus Endógenos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Replicación Viral/genética
6.
Proc Natl Acad Sci U S A ; 116(51): 25891-25899, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776247

RESUMEN

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.


Asunto(s)
VIH-1/genética , Integración Viral/genética , Replicación Viral/genética , Antirretrovirales/uso terapéutico , Secuencia de Bases , Línea Celular , ADN Viral/genética , Farmacorresistencia Viral , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/virología , Ganglios Linfáticos/virología , Mutación , Provirus/genética , Integración Viral/fisiología
7.
Retrovirology ; 18(1): 16, 2021 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-34176496

RESUMEN

The characterisation of the HIV-1 reservoir, which consists of replication-competent integrated proviruses that persist on antiretroviral therapy (ART), is made difficult by the rarity of intact proviruses relative to those that are defective. While the only conclusive test for the replication-competence of HIV-1 proviruses is carried out in cell culture, genetic characterization of genomes by near full-length (NFL) PCR and sequencing can be used to determine whether particular proviruses have insertions, deletions, or substitutions that render them defective. Proviruses that are not excluded by having such defects can be classified as genetically intact and, possibly, replication competent. Identifying and quantifying proviruses that are potentially replication-competent is important for the development of strategies towards a functional cure. However, to date, there are no programs that can be incorporated into deep-sequencing pipelines for the automated characterization and annotation of HIV genomes. Existing programs that perform this work require manual intervention, cannot be widely installed, and do not have easily adjustable settings. Here, we present HIVIntact, a python-based software tool that characterises genomic defects in NFL HIV-1 sequences, allowing putative intact genomes to be identified in-silico. Unlike other applications that assess the genetic intactness of HIV genomes, this tool can be incorporated into existing sequence-analysis pipelines and applied to large next-generation sequencing datasets.


Asunto(s)
ADN Viral/genética , Genoma Viral , VIH-1/genética , Programas Informáticos/normas , Humanos , Provirus/genética , Integración Viral , Latencia del Virus
8.
PLoS Pathog ; 15(7): e1007869, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291371

RESUMEN

Clonal expansion of HIV infected cells plays an important role in the formation and persistence of the reservoir that allows the virus to persist, in DNA form, despite effective antiretroviral therapy. We used integration site analysis to ask if there is a similar clonal expansion of SIV infected cells in macaques. We show that the distribution of HIV and SIV integration sites in vitro is similar and that both viruses preferentially integrate in many of the same genes. We obtained approximately 8000 integration sites from blood samples taken from SIV-infected macaques prior to the initiation of ART, and from blood, spleen, and lymph node samples taken at necropsy. Seven clones were identified in the pre-ART samples; one persisted for a year on ART. An additional 100 clones were found only in on-ART samples; a number of these clones were found in more than one tissue. The timing and extent of clonal expansion of SIV-infected cells in macaques and HIV-infected cells in humans is quite similar. This suggests that SIV-infected macaques represent a useful model of the clonal expansion of HIV infected cells in humans that can be used to evaluate strategies intended to control or eradicate the viral reservoir.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Animales , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Reservorios de Enfermedades/virología , Infecciones por VIH/patología , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral/efectos de los fármacos , Integración Viral/genética , Integración Viral/fisiología , Replicación Viral/efectos de los fármacos
9.
BMC Genomics ; 21(1): 517, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727364

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

10.
BMC Genomics ; 21(1): 216, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32151239

RESUMEN

BACKGROUND: All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS: To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS: We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.


Asunto(s)
Infecciones por VIH/genética , VIH/fisiología , Integración Viral , Mapeo Cromosómico , Biología Computacional , ADN Viral , Genoma Humano , Humanos , Reacción en Cadena de la Polimerasa , Provirus/fisiología , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 114(18): E3659-E3668, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416661

RESUMEN

Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2-18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression.


Asunto(s)
Antirretrovirales/administración & dosificación , Regulación Viral de la Expresión Génica/efectos de los fármacos , VIH-1/metabolismo , Leucocitos Mononucleares/metabolismo , Provirus/metabolismo , ARN Viral/biosíntesis , Transcripción Genética/efectos de los fármacos , Femenino , Humanos , Leucocitos Mononucleares/virología , Masculino
12.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046454

RESUMEN

Increasing evidence suggests that repetitive elements may play a role in host gene regulation, particularly through the donation of alternative promoters, enhancers, splice sites, and termination signals. Elevated transcript expression of the endogenous retrovirus group HERV-K (HML-2) is seen in many human cancers, although the identities of the individual proviral loci contributing to this expression as well as their mechanisms of activation have been unclear. Using high-throughput next-generation sequencing techniques optimized for the capture of HML-2 expression, we characterized the HML-2 transcriptome and means of activation in an in vitro model of human mammary epithelial cell transformation. Our analysis showed significant expression originating from 15 HML-2 full-length proviruses, through four modes of transcription. The majority of expression was in the antisense orientation and from proviruses integrated within introns. We found two instances of long terminal repeat (LTR)-driven provirus transcription but no evidence to suggest that these active 5' LTRs were influencing nearby host gene expression. Importantly, LTR-driven transcription was restricted to tumorigenic cells, suggesting that LTR promoter activity is dependent upon the transcriptional environment of a malignant cell.IMPORTANCE Here, we use an in vitro model of human mammary epithelial cell transformation to assess how malignancy-associated shifts in the transcriptional milieu of a cell may impact HML-2 activity. We found 15 proviruses to be significantly expressed through four different mechanisms, with the majority of transcripts being antisense copies of proviruses located within introns. We saw active 5' LTR use in tumorigenic cells only, suggesting that the cellular environment of a cancer cell is a critical component for induction of LTR promoter activity. These findings have implications for future studies investigating HML-2 as a target for immunotherapy or as a biomarker for disease.


Asunto(s)
Transformación Celular Viral , Retrovirus Endógenos/genética , Células Epiteliales/virología , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/virología , Transcripción Genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Genoma Humano , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Regiones Promotoras Genéticas , Provirus/genética , Secuencias Repetidas Terminales , Transcriptoma
13.
PLoS Pathog ; 13(3): e1006283, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28328934

RESUMEN

The major obstacle to curing HIV infection is the persistence of cells with intact proviruses that can produce replication-competent virus. This HIV reservoir is believed to exist primarily in CD4+ T-cells and is stable despite years of suppressive antiretroviral therapy. A potential mechanism for HIV persistence is clonal expansion of infected cells, but how often such clones carry replication-competent proviruses has been controversial. Here, we used single-genome sequencing to probe for identical HIV sequence matches among viruses recovered in different viral outgrowth cultures and between the sequences of outgrowth viruses and proviral or intracellular HIV RNA sequences in uncultured blood mononuclear cells from eight donors on suppressive ART with diverse proviral populations. All eight donors had viral outgrowth virus that was fully susceptible to their current ART drug regimen. Six of eight donors studied had identical near full-length HIV RNA sequences recovered from different viral outgrowth cultures, and one of the two remaining donors had identical partial viral sequence matches between outgrowth virus and intracellular HIV RNA. These findings provide evidence that clonal expansion of HIV-infected cells is an important mechanism of reservoir persistence that should be targeted to cure HIV infection.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Fármacos Anti-VIH/uso terapéutico , Humanos , Reacción en Cadena de la Polimerasa , Carga Viral/genética
14.
Proc Natl Acad Sci U S A ; 113(16): E2326-34, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27001843

RESUMEN

Endogenous retroviruses (ERVs) have contributed to more than 8% of the human genome. The majority of these elements lack function due to accumulated mutations or internal recombination resulting in a solitary (solo) LTR, although members of one group of human ERVs (HERVs), HERV-K, were recently active with members that remain nearly intact, a subset of which is present as insertionally polymorphic loci that include approximately full-length (2-LTR) and solo-LTR alleles in addition to the unoccupied site. Several 2-LTR insertions have intact reading frames in some or all genes that are expressed as functional proteins. These properties reflect the activity of HERV-K and suggest the existence of additional unique loci within humans. We sought to determine the extent to which other polymorphic insertions are present in humans, using sequenced genomes from the 1000 Genomes Project and a subset of the Human Genome Diversity Project panel. We report analysis of a total of 36 nonreference polymorphic HERV-K proviruses, including 19 newly reported loci, with insertion frequencies ranging from <0.0005 to >0.75 that varied by population. Targeted screening of individual loci identified three new unfixed 2-LTR proviruses within our set, including an intact provirus present at Xq21.33 in some individuals, with the potential for retained infectivity.


Asunto(s)
Alelos , Retrovirus Endógenos/genética , Sitios Genéticos , Mutagénesis Insercional , Polimorfismo Genético , Secuencias Repetidas Terminales , Femenino , Humanos , Masculino
15.
Proc Natl Acad Sci U S A ; 113(7): 1883-8, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26858442

RESUMEN

Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4(+)T cells. Some of these CD4(+)T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4(+) T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1-infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4(+)T cells can be a reservoir of infectious HIV-1.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Replicación Viral , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Datos de Secuencia Molecular , Virulencia
16.
Retrovirology ; 15(1): 57, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30126415

RESUMEN

BACKGROUND: Increased transcription of the human endogenous retrovirus group HERV-K (HML-2) is often seen during disease. Although the mechanism of its tissue-specific activation is unclear, research shows that LTR CpG hypomethylation alone is not sufficient to induce its promoter activity and that the transcriptional milieu of a malignant cell contributes, at least partly, to differential HML-2 expression. RESULTS: We analyzed the relationship between LTR sequence variation and promoter expression patterns in human breast cancer cell lines, finding them to be positively correlated. In particular, two proviruses (3q12.3 and 11p15.4) displayed increased activity in almost all tumorigenic cell lines sampled. Using a transcription factor binding site prediction algorithm, we identified two unique binding sites in each 5' LTR that appeared to be associated with inducing promoter activity during neoplasia. Genomic analysis of the homologous proviruses in several non-human primates indicated post-integration genetic drift in two transcription factor binding sites, away from the ancestral sequence and towards the active form. Based on the sequences of 2504 individuals from the 1000 Genomes Project, the active form of the 11p15.4 site was found to be polymorphic within the human population, with an allele frequency of 51%, whereas the activating mutation in the 3q12.3 provirus was fixed in humans but not present in the orthologous provirus in chimpanzees or gorillas. CONCLUSIONS: These data suggest that stage-specific transcription factors at least partly contribute to LTR promoter activity during transformation and that, in some cases, transcription factor binding site polymorphisms may be responsible for the differential HML-2 expression often seen between individuals.


Asunto(s)
Retrovirus Endógenos/genética , Expresión Génica , Regiones Promotoras Genéticas/genética , Provirus/genética , Secuencias Repetidas Terminales/genética , Factores de Transcripción/metabolismo , Sitios de Unión/genética , Línea Celular Tumoral , Retrovirus Endógenos/clasificación , Flujo Genético , Variación Genética , Genoma Viral/genética , Humanos , Mutación , Polimorfismo Genético , Provirus/clasificación
17.
Retrovirology ; 15(1): 59, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30153831

RESUMEN

Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.


Asunto(s)
Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Animales , Evolución Molecular , Sitios Genéticos , Variación Genética , Genómica , Humanos , Terminología como Asunto , Vertebrados/genética , Vertebrados/virología
18.
Proc Natl Acad Sci U S A ; 112(51): 15525-9, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26696625

RESUMEN

After the discovery of retroviral reverse transcriptase in 1970, there was a flurry of activity, sparked by the "War on Cancer," to identify human cancer retroviruses. After many false claims resulting from various artifacts, most scientists abandoned the search, but the Gallo laboratory carried on, developing both specific assays and new cell culture methods that enabled them to report, in the accompanying 1980 PNAS paper, identification and partial characterization of human T-cell leukemia virus (HTLV; now known as HTLV-1) produced by a T-cell line from a lymphoma patient. Follow-up studies, including collaboration with the group that first identified a cluster of adult T-cell leukemia (ATL) cases in Japan, provided conclusive evidence that HTLV was the cause of this disease. HTLV-1 is now known to infect at least 4-10 million people worldwide, about 5% of whom will develop ATL. Despite intensive research, knowledge of the viral etiology has not led to improvement in treatment or outcome of ATL. However, the technology for discovery of HTLV and acknowledgment of the existence of pathogenic human retroviruses laid the technical and intellectual foundation for the discovery of the cause of AIDS soon afterward. Without this advance, our ability to diagnose and treat HIV infection most likely would have been long delayed.


Asunto(s)
Infecciones por HTLV-I/historia , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Síndrome de Inmunodeficiencia Adquirida/historia , Síndrome de Inmunodeficiencia Adquirida/virología , Infecciones por HTLV-I/virología , Historia del Siglo XX , Humanos , Leucemia-Linfoma de Células T del Adulto/historia , Leucemia-Linfoma de Células T del Adulto/virología , Linfocitos T/virología , Virología/historia
19.
J Infect Dis ; 215(11): 1725-1733, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431010

RESUMEN

Background: Reversing immune exhaustion with an anti-PD-L1 antibody may improve human immunodeficiency virus type 1 (HIV-1)-specific immunity and increase clearance of HIV-1-expressing cells. Methods: We conducted a phase I, randomized, double-blind, placebo-controlled, dose-escalating study of BMS-936559, including HIV-1-infected adults aged >18 to <70 years on suppressive antiretroviral therapy with CD4+ counts >350 cells/µL and detectable plasma HIV-1 RNA by single-copy assay. Data on single infusions of BMS-936559 (0.3 mg/kg) versus placebo are described. The primary outcomes were safety defined as any grade 3 or greater or immune-related adverse event (AE) and the change in HIV-1 Gag-specific CD8+ T cell responses from baseline to day 28 after infusion. Results: Eight men enrolled: 6 received 0.3 mg/kg of BMS-936559, and 2 received placebo infusions. There were no BMS-936559-related grade 3 or greater AEs. In 1 participant, asymptomatic hypophysitis (a protocol-defined immune-related AE) was identified 266 days after BMS-936559 infusion; it resolved over time. The mean percentage of HIV-1 Gag-specific CD8+ T cells expressing interferon γ increased from baseline (0.09%) through day 28 (0.20%; P = .14), driven by substantial increases in 2 participants who received BMS-936559. Conclusions: In this first evaluation of an immunologic checkpoint inhibitor in healthy HIV-1-infected persons, single low-dose BMS-936559 infusions appeared to enhance HIV-1-specific immunity in a subset of participants. Clinical Trials Registration: NCT02028403.


Asunto(s)
Antirretrovirales/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Infecciones por VIH/tratamiento farmacológico , Adulto , Linfocitos T CD8-positivos , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1 , Humanos , Masculino , Persona de Mediana Edad
20.
J Virol ; 90(3): 1369-76, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581989

RESUMEN

UNLABELLED: Understanding the origin of HIV variants during viral rebound may provide insight into the composition of the HIV reservoir and has implications for the design of curative interventions. HIV single-genome sequences were obtained from 10 AIDS Clinical Trials Group participants who underwent analytic antiretroviral therapy (ART) interruption (ATI). Rebounding variants were compared with those in pre-ART plasma in all 10 participants and with on-ART peripheral blood mononuclear cell (PBMC)-associated DNA and RNA (CA-RNA) in 7/10 participants. The highest viral diversities were found in the DNA and CA-RNA populations. In 3 of 7 participants, we detected multiple, identical DNA and CA-RNA sequences during suppression on ART that exactly matched plasma HIV sequences. Hypermutated DNA and CA-RNA were detected in four participants, contributing to diversities in these compartments that were higher than in the pre-ART and post-ATI plasma. Shifts in the viral rebound populations could be detected in some participants over the 2- to 3-month observation period. These findings suggest that a source of initial rebound viremia could be populations of infected cells that clonally expanded prior to and/or during ART, some of which were already expressing HIV RNA before treatment was interrupted. These clonally expanding populations of HIV-infected cells may represent an important target for strategies aimed at achieving reservoir reduction and sustained virologic remission. IMPORTANCE: Antiretroviral therapy alone cannot eradicate the HIV reservoir, and viral rebound is generally rapid after treatment interruption. It has been suggested that clonal expansion of HIV-infected cells is an important mechanism of HIV reservoir persistence, but the contribution of these clonally proliferating cells to the rebounding virus is unknown. We report a study of AIDS Clinical Trials Group participants who underwent treatment interruption and compared rebounding plasma virus with that found within cells prior to treatment interruption. We found several incidences in which plasma HIV variants exactly matched that of multiple proviral DNA copies from infected blood cells sampled before treatment interruption. In addition, we found that these cells were not dormant but were generating unspliced RNA transcripts before treatment was interrupted. Identification of the HIV reservoir and determining its mechanisms for persistence may aid in the development of strategies toward a cure for HIV. (This study was presented in part at the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, February 23 to 26 2015.).


Asunto(s)
Antirretrovirales/uso terapéutico , Variación Genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Plasma/virología , Provirus/clasificación , Transcripción Genética , Femenino , Humanos , Masculino , Provirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA