Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Mater ; 20(10): 1378-1384, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34341524

RESUMEN

Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.

2.
Small ; 17(42): e2104067, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34541782

RESUMEN

Powder metallurgy introduces small structures of high-density grain boundaries into Bi2 Te3 -based alloys, which promises to enhance their mechanical and thermoelectric performance. However, due to the strong donor-like effect induced by the increased surface, Te vacancies form in the powder-metallurgy process. Hence, the as-sintered n-type Bi2 Te3 -based alloys show a lower figure of merit (ZT) value than their p-type counterparts and the commercial zone-melted (ZM) ingots. Here, boron is added to one-step-sintered n-type Bi2 Te3 -based alloys to inhibit grain growth and to suppress the donor-like effect, simultaneously improving the mechanical and thermoelectric (TE) performance. Due to the alleviated donor-like effect and the carrier mobility maintained in our n-type Bi2 Te2.7 Se0.3 alloys upon the addition of boron, the maximum and average ZT values within 298-473 K can be enhanced to 1.03 and 0.91, respectively, which are even slightly higher than that of n-type ZM ingots. Moreover, the addition of boron greatly improves the mechanical strength such as Vickers hardness and compressive strength due to the synergetic effects of Hall-Petch grain-boundary strengthening and boron dispersion strengthening. This facile and cost-effective grain boundary engineering by adding boron facilitates the practical application of Bi2 Te3 -based alloys and can also be popularized in other thermoelectric materials.

3.
Microsc Microanal ; 27(1): 28-35, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33280636

RESUMEN

Atom probe tomography is a powerful tool for investigating nanostructures such as interfaces and nanoparticles in material science. Advanced analysis tools are particularly useful for analyzing these nanostructures characterized very often by curved shapes. However, these tools are very limited for complex materials with non-negligible peak overlaps in their respective mass-to-charge ratio spectra. Usually, an analyst solves peak overlaps in the bulk regions, but the behavior at interfaces is rarely considered. Therefore, in this work, we demonstrate how the proximity histogram generated for a specific interface can be corrected by using the natural abundances of isotopes. This leads to overlap-solved proximity histograms with a resolution of up to 0.1 nm. This work expands on previous work that showed the advantage of a maximum-likelihood peak overlap solving. The corrected proximity histograms together with the maximum-likelihood peak overlap algorithm were implemented in a user-friendly software suite called EPOSA.

4.
Nano Lett ; 20(1): 116-121, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31804085

RESUMEN

Carbon nanotubes, which possess an atomic arrangement that closely resembles graphene, form a class of nanomaterials with an exceptional application portfolio including electronics, batteries, sensors, etc. Both carbon nanotubes and graphene have exceptional mechanical and electronic properties. These exceptional properties of graphene are attributed to the combined effect of σ and π bonds which form upon sp2 hybridization, resulting in what is known as resonant bonding. Here, we use atom probe tomography (APT, a technique based on controlled desorption of atoms under high electric field) to observe its bond-rupture characteristics. Results show that the bond rupture of carbon nanotubes, which are resonantly bonded, is similar to that observed for covalently bonded systems. However, a significant difference is observed when compared with those solids which are metavalently bonded. This clearly justifies that resonant bonding, a sub-branch of covalent bonding, is very different from "metavalent" bonding.

5.
J Am Chem Soc ; 142(35): 15172-15186, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786777

RESUMEN

Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system CuxPbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400-773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 µW cm-1 K-2 from 400 to 773 K with a maximum of ∼30 µW cm-1 K-2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 µW cm-1 K-2 at 773 K is even higher than ∼21 µW cm-1 K-2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm-1 K-1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.

6.
Nat Mater ; 17(8): 681-685, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915424

RESUMEN

Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way1-3, with potential for neuromorphic computing applications4-6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6-8. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage.


Asunto(s)
Equipos y Suministros Eléctricos , Antimonio , Conductividad Eléctrica
7.
Microsc Microanal ; 25(2): 301-308, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714566

RESUMEN

Although atom probe tomography (APT) reconstructions do not directly influence the local elemental analysis, any structural inferences from APT volumes demand a reliable reconstruction of the point cloud. Accurate estimation of the reconstruction parameters is crucial to obtain reliable spatial scaling. In the current work, a new automated approach of calibrating atom probe reconstructions is developed using only one correlative projection electron microscopy (EM) image. We employed an algorithm that implements a 2D cross-correlation of microstructural features observed in both the APT reconstructions and the corresponding EM image. We apply this protocol to calibrate reconstructions in a Cu(In,Ga)Se2-based semiconductor and in a Co-based superalloy. This work enables us to couple chemical precision to structural information with relative ease.

8.
J Am Chem Soc ; 140(45): 15535-15545, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30343568

RESUMEN

From a structural and economic perspective, tellurium-free PbSe can be an attractive alternative to its more expensive isostructural analogue of PbTe for intermediate temperature power generation. Here we report that PbSe0.998Br0.002-2%Cu2Se exhibits record high peak ZT 1.8 at 723 K and average ZT 1.1 between 300 and 823 K to date for all previously reported n- and p-type PbSe-based materials as well as tellurium-free n-type polycrystalline materials. These even rival the highest reported values for n-type PbTe-based materials. Cu2Se doping not only enhance charge transport properties but also depress thermal conductivity of n-type PbSe. It flattens the edge of the conduction band of PbSe, increases the effective mass of charge carriers, and enlarges the energy band gap, which collectively improve the Seebeck coefficient markedly. This is the first example of manipulating the electronic conduction band to enhance the thermoelectric properties of n-type PbSe. Concurrently, Cu2Se increases the carrier concentration with nearly no loss in carrier mobility, even increasing the electrical conductivity above ∼423 K. The resulting power factor is ultrahigh, reaching ∼21-26 µW cm-1 K-2 over a wide range of temperature from ∼423 to 723 K. Cu2Se doping substantially reduces the lattice thermal conductivity to ∼0.4 W m-1 K-1 at 773 K, approaching its theoretical amorphous limit. According to first-principles calculations, the achieved ultralow value can be attributed to remarkable acoustic phonon softening at the low-frequency region.

9.
Phys Rev Lett ; 121(1): 015702, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028158

RESUMEN

The unique combination of atomic-scale composition measurements, employing atom probe tomography, atomic structure determination with picometer resolution by aberration-corrected scanning transmission electron microscopy, and atomistic simulations reveals site-specific linear segregation features at grain boundary facet junctions. More specific, an asymmetric line segregation along one particular type of facet junction core, instead of a homogeneous decoration of the facet planes, is observed. Molecular-statics calculations show that this segregation pattern is a consequence of the interplay between the asymmetric core structure and its corresponding local strain state. Our results contrast with the classical view of a homogeneous decoration of the facet planes and evidence a complex segregation patterning.

10.
Microsc Microanal ; 23(2): 291-299, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28215198

RESUMEN

In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.

11.
Angew Chem Int Ed Engl ; 56(34): 10204-10208, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28194844

RESUMEN

A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe0.75 Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4 Se3 Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4 Se3 Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts.

12.
Nat Commun ; 15(1): 3177, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609361

RESUMEN

Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.

13.
Nat Commun ; 14(1): 719, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759611

RESUMEN

Grain boundaries (GBs) play a significant role in controlling the transport of mass, heat and charge. To unravel the mechanisms underpinning the charge carrier scattering at GBs, correlative microscopy combined with local transport measurements is realized. For the PbTe material, the strength of carrier scattering at GBs depends on its misorientation angle. A concomitant change in the barrier height is observed, significantly increasing from low- to high-angle GBs. Atom probe tomography measurements reveal a disruption of metavalent bonding (MVB) at the dislocation cores of low-angle GBs, as evidenced by the abrupt change in bond-rupture behavior. In contrast, MVB is completely destroyed at high-angle GBs, presumably due to the increased Peierls distortion. The collapse of MVB is accompanied by a breakdown of the dielectric screening, which explains the enlarged GB barrier height. These findings correlate charge carrier scattering with bonding locally, promising new avenues for the design of advanced functional materials.

14.
Adv Mater ; 35(19): e2300893, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36920476

RESUMEN

Doping is usually the first step to tailor thermoelectrics. It enables precise control of the charge-carrier concentration and concomitant transport properties. Doping should also turn GeSe, which features an intrinsically a low carrier concentration, into a competitive thermoelectric. Yet, elemental doping fails to improve the carrier concentration. In contrast, alloying with Ag-V-VI2 compounds causes a remarkable enhancement of thermoelectric performance. This advance is closely related to a transition in the bonding mechanism, as evidenced by sudden changes in the optical dielectric constant ε∞ , the Born effective charge, the maximum of the optical absorption ε2 (ω), and the bond-breaking behavior. These property changes are indicative of the formation of metavalent bonding (MVB), leading to an octahedral-like atomic arrangement. MVB is accompanied by a thermoelectric-favorable band structure featuring anisotropic bands with small effective masses and a large degeneracy. A quantum-mechanical map, which distinguishes different types of chemical bonding, reveals that orthorhombic GeSe employs covalent bonding, while rhombohedral and cubic GeSe utilize MVB. The transition from covalent to MVB goes along with a pronounced improvement in thermoelectric performance. The failure or success of different dopants can be explained by this concept, which redefines doping rules and provides a "treasure map" to tailor p-bonded chalcogenides.

15.
Adv Mater ; 34(37): e2203954, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35900293

RESUMEN

Growth of Cu(In,Ga)Se2 (CIGS) absorbers under Cu-poor conditions gives rise to incorporation of numerous defects into the bulk, whereas the same absorber grown under Cu-rich conditions leads to a stoichiometric bulk with minimum defects. This suggests that CIGS absorbers grown under Cu-rich conditions are more suitable for solar cell applications. However, the CIGS solar cell devices with record efficiencies have all been fabricated under Cu-poor conditions, despite the expectations. Therefore, in the present work, both Cu-poor and Cu-rich CIGS cells are investigated, and the superior properties of the internal interfaces of the Cu-poor CIGS cells, such as the p-n junction and grain boundaries, which always makes them the record-efficiency devices, are shown. More precisely, by employing a correlative microscopy approach, the typical fingerprints for superior properties of internal interfaces necessary for maintaining a lower recombination activity in the cell is discovered. These are a Cu-depleted and Cd-enriched CIGS absorber surface, near the p-n junction, as well as a negative Cu factor (∆ß) and high Na content (>1.5 at%) at the grain boundaries. Thus, this work provides key factors governing the device performance (efficiency), which can be considered in the design of next-generation solar cells.

16.
ACS Nano ; 16(1): 78-88, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34549956

RESUMEN

SnSe has emerged as one of the most promising materials for thermoelectric energy conversion due to its extraordinary performance in its single-crystal form and its low-cost constituent elements. However, to achieve an economic impact, the polycrystalline counterpart needs to replicate the performance of the single crystal. Herein, we optimize the thermoelectric performance of polycrystalline SnSe produced by consolidating solution-processed and surface-engineered SnSe particles. In particular, the SnSe particles are coated with CdSe molecular complexes that crystallize during the sintering process, forming CdSe nanoparticles. The presence of CdSe nanoparticles inhibits SnSe grain growth during the consolidation step due to Zener pinning, yielding a material with a high density of grain boundaries. Moreover, the resulting SnSe-CdSe nanocomposites present a large number of defects at different length scales, which significantly reduce the thermal conductivity. The produced SnSe-CdSe nanocomposites exhibit thermoelectric figures of merit up to 2.2 at 786 K, which is among the highest reported for solution-processed SnSe.

17.
Adv Sci (Weinh) ; 9(25): e2202594, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35851767

RESUMEN

Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3 Sb1.5 Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

18.
Adv Mater ; 33(52): e2106858, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626034

RESUMEN

Solution synthesis of particles emerges as an alternative to prepare thermoelectric materials with less demanding processing conditions than conventional solid-state synthetic methods. However, solution synthesis generally involves the presence of additional molecules or ions belonging to the precursors or added to enable solubility and/or regulate nucleation and growth. These molecules or ions can end up in the particles as surface adsorbates and interfere in the material properties. This work demonstrates that ionic adsorbates, in particular Na+ ions, are electrostatically adsorbed in SnSe particles synthesized in water and play a crucial role not only in directing the material nano/microstructure but also in determining the transport properties of the consolidated material. In dense pellets prepared by sintering SnSe particles, Na remains within the crystal lattice as dopant, in dislocations, precipitates, and forming grain boundary complexions. These results highlight the importance of considering all the possible unintentional impurities to establish proper structure-property relationships and control material properties in solution-processed thermoelectric materials.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37719173

RESUMEN

Atom probe tomography (APT) provides three-dimensional compositional mapping with sub-nanometre resolution. The sensitivity of APT is in the range of parts per million for all elements, including light elements such as hydrogen, carbon or lithium, enabling unique insights into the composition of performance-enhancing or lifetime-limiting microstructural features and making APT ideally suited to complement electron-based or X-ray-based microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging from its inception as an evolution of field ion microscopy to the most recent developments in specimen preparation, including for nanomaterials. We touch on data reconstruction, analysis and various applications, including in the geosciences and the burgeoning biological sciences. We review the underpinnings of APT performance and discuss both strengths and limitations of APT, including how the community can improve on current shortcomings. Finally, we look forwards to true atomic-scale tomography with the ability to measure the isotopic identity and spatial coordinates of every atom in an ever wider range of materials through new specimen preparation routes, novel laser pulsing and detector technologies, and full interoperability with complementary microscopy techniques.

20.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34355435

RESUMEN

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA