Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nanotechnology ; 28(10): 105709, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28177936

RESUMEN

We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (µ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

2.
Int J Mol Sci ; 14(9): 18200-14, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24013372

RESUMEN

A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.


Asunto(s)
Resinas Epoxi/síntesis química , Triazinas/química , Resinas Epoxi/química
3.
Materials (Basel) ; 16(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36984279

RESUMEN

Stabilization/solidification (S/S) is becoming increasingly important, as it allows the remediation of contaminated sediments and their recovery into materials for civil engineering. This research proposes a cement-free cold granulation process for manufactured low-cost aggregates from marine sediments contaminated with organic compounds and metals. After the chemo-physical characterization of the study materials, two mix designs were prepared in a rotary plate granulator by adding two industrial by-products as geopolymer precursors, coal fly ash (CFA) and Blast Furnace Slag (BFS), but also alkaline activation solutions, water, and a fluidizer. The results indicated that sediments treated with mix 1 (i.e., with a higher percentage of water and fluidifier) represent the optimal solution in terms of metal leachability. The metal leachability was strictly influenced by aggregates' porosity, density, and microstructure. The technical performance (such as the aggregate impact value > 30%) suggested the use of granules as lightweight aggregates for pavement construction. The results indicated that cold granulation represents a sustainable solution to recycling contaminated marine sediments, CFA, and BFS into lightweight artificial aggregates.

4.
Materials (Basel) ; 15(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683327

RESUMEN

This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as the main component in artificially manufactured aggregates containing cement and ground granulated blast furnace slag (GGBFS) in different percentages. The produced aggregates were used to produce lightweight concrete (LWC) containing both artificial aggregates only and artificial aggregates mixed with a relatively small percentage of recycled polyethylene terephthalate (PET) in the sand form. Thereby, the possibility of producing concrete with good mechanical properties and enhanced thermal properties was investigated through effective PET reuse with beneficial impacts on the thermal insulation of structures. Based on the obtained results, the samples containing artificial aggregates had lower compressive strength (up to 30%) but better thermal performance (up to 25%) with respect to the reference sample made from natural aggregates. Moreover, substituting 10% of recycled aggregates with PET led to a greater reduction in resistance while improving the thermal conductivity. This type of concrete could improve the economic and environmental aspects by incorporating industrial wastes-mainly fly ash-thereby lowering the use of cement, which would lead to a reduction in CO2 emissions.

5.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454421

RESUMEN

The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of "green" concrete but that the sustainability of the building materials can only be achieved by implementing simultaneous multiple strategies aimed at reducing environmental impact and improving both durability and performances.

6.
Sci Total Environ ; 798: 149250, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34332383

RESUMEN

Ensure sustainable consumption and production patterns requires urgent actions to combat climate change and its impacts as established by Sustainable Development Goals (SDGs). In this context, this study demonstrates the feasibility to produce structural concrete using recycled aggregates from construction and demolition waste in Italy. More specifically, the present research aims to analyze the environmental impacts caused by five mixtures of concrete, with similar mechanical properties and workability, but with a different amount of recycled coarse aggregate and natural coarse aggregate (0% - 30% - 50% - 70% - 100%). Fixed plant and a mobile plant treatments are investigated as two different modes of production of recycled aggregates. Life Cycle Assessment (LCA) methodology is applied to achieve this goal. The main results demonstrate that mixtures formed by recycled coarse aggregates have a better environmental impacts than the only one formed exclusively by natural coarse aggregates and results improve when the amount of recycled coarse aggregate is higher.


Asunto(s)
Administración de Residuos , Materiales de Construcción , Ambiente , Residuos Industriales/análisis , Reciclaje
7.
Materials (Basel) ; 14(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921708

RESUMEN

In the last 20 years, there have been a series of seismic events in Italy that have caused serious damage to civil and building structures. This has led to a significant increase in the use of concrete for the reconstruction of new structures and the repair of existing structures damaged by earthquakes. At the same time, the concrete industry is responsible for the most significant environmental damage during the life cycle of the built environment. The environmental disadvantages characterizing the concrete industry are related to the constant growth of the exploitation of natural aggregates. Therefore, it is necessary to use alternative and innovative aggregates that provide good concrete performance and lower environmental impacts. In this study, a very promising route from an environmental point of view is given by the use of artificial aggregates from industrial waste as substitutes for natural aggregates. An innovative low cost and energy saving granulation process has been employed to produce lightweight aggregates using fly ash from the incineration of municipal solid waste and ground granulated blast furnace slag. The final aim of this research is to demonstrate the environmental sustainability of artificial aggregates, through a comparison of three different mixtures.

8.
World J Clin Cases ; 9(30): 9077-9089, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34786390

RESUMEN

BACKGROUND: The standard treatment of locally advanced rectal cancers (LARC) consists on neoadjuvant chemoradiotherapy followed by total mesorectal excision. Different data in literature showed a benefit on tumor downstaging and pathological complete response (pCR) rate using radiotherapy dose escalation, however there is shortage of studies regarding dose escalation using the innovative techniques for LARC (T3-4 or N1-2). AIM: To analyze the role of neoadjuvant radiotherapy dose escalation for LARC using innovative radiotherapy techniques. METHODS: In December 2020, we conducted a comprehensive literature search of the following electronic databases: PubMed, Web of Science, Scopus and Cochrane library. The limit period of research included articles published from January 2009 to December 2020. Screening by title and abstract was carried out to identify only studies using radiation doses equivalent dose 2 Gy fraction (EQD2) ≥ 54 Gy and Volumetric Modulated Arc Therapy (VMAT), intensity-modulated radiotherapy or image-guided radiotherapy (IGRT) techniques. The authors' searches generated a total of 2287 results and, according to PRISMA Group (2009) screening process, 21 publications fulfil selection criteria and were included for the review. RESULTS: The main radiotherapy technique used consisted in VMAT and IGRT modality. The mainly dose prescription was 55 Gy to high risk volume and 45 Gy as prophylactic volume in 25 fractions given with simultaneous integrated boosts technique (42.85%). The mean pCR was 28.2% with no correlation between dose prescribed and response rates (P value ≥ 0.5). The R0 margins and sphincter preservation rates were 98.88% and 76.03%, respectively. After a mean follow-up of 35 months local control was 92.29%. G3 or higher toxicity was 11.06% with no correlation between dose prescription and toxicities. Patients receiving EQD2 dose > 58.9 Gy and BED > 70.7 Gy had higher surgical complications rates compared to other group (P value = 0.047). CONCLUSION: Dose escalation neoadjuvant radiotherapy using innovative techniques is safe for LARC achieving higher rates of pCR. EQD2 doses > 58.9 Gy is associated with higher rate of surgical complications.

9.
Radiat Oncol J ; 38(4): 287-290, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33389984

RESUMEN

We reported a successful case management of G3 skin acute dermatitis in a 32-year-old woman affected by locally advanced breast cancer underwent adjuvant chest wall irradiation. Skin acute toxicity with dry desquamation areas was treated daily with dressing medication using physiological solution, oxygen therapy and applying hyaluronic acid gauze. At the end of radiotherapy treatment, G3 skin acute dermatitis with moist desquamation was observed, so the patient continued advanced wound dressing shifted to twice weekly with physiological solution, oxygen therapy and applying hydrocolloid dressing. The patient completed radiotherapy treatment without interruption and one month after treatment acute skin toxicity was resolved with pain relief. We suggest that advanced dressing with trained nursing staff is essential in this sub-set of patients due to guaranteed continuation of radiotherapy treatment, indispensable to ensure patient cure.

10.
Polymers (Basel) ; 11(1)2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30960046

RESUMEN

This paper highlights the multi-material additive manufacturing (AM) route for manufacturing of innovative materials and structures. Three different recycled thermoplastics, namely acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high impact polystyrene (HIPS) (with different Young's modulus, glass transition temperature, rheological properties), have been selected (as a case study) for multi-material AM. The functional prototypes have been printed on fused deposition modelling (FDM) setup as tensile specimens (as per ASTM D638 type-IV standard) with different combinations of top, middle, and bottom layers (of ABS/PLA/HIPS), at different printing speed and infill percentage density. The specimens were subjected to thermal (glass transition temperature and heat capacity) and mechanical testing (peak load, peak strength, peak elongation, percentage elongation at peak, and Young's modulus) to ascertain their suitability in load-bearing structures, and the fabrication of functional prototypes of mechanical meta-materials. The results have been supported by photomicrographs to observe the microstructure of the analyzed multi-materials.

11.
Materials (Basel) ; 12(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795290

RESUMEN

This study deals with the development of Nylon-6 fused deposition modeling (FDM) filaments for additive manufacturing, which couples high mechanical performances with eco-sustainability. These filaments were extruded from recycled Nylon-6 granulates through a dedicated twin-screw extrusion line, which processes either pure Nylon-6 grains, or mixtures of such a material with minor fractions of acrylonitrile butadiene styrene (ABS) and titanium dioxide (TiO2). The rheological and thermal properties of the investigated filaments are analyzed, including melt flow index, melting temperature, and decomposition temperature, which are of the utmost importance when avoiding the overheating and decomposition of the material. Such a study is conducted in both pre-extrusion and post-extrusion conditions. The tensile strength, the wear resistance, and the printability of the examined recycled Nylon-6 filaments are also studied by comparing the properties of such filaments with those exhibited by different nylon-based filaments for FDM that are available in the market. The given results show that the recycling of Nylon-6 through the "caprolactam" regeneration route enables the newly formed material to retain high physical and mechanical properties, such as tensile strength at yield in the interval 55.79-86.91 MPa. Referring to the basic composition of the filaments examined in the present study, this remarkably high-yield strength is accompanied by a Young modulus of 1.64 GPa, and wear resistance of 92 µm, under a 15 min/1 kg load pin-on-disk test carried at the sliding speed of 250 rpm.

12.
J Hazard Mater ; 157(2-3): 599-604, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18289785

RESUMEN

Fuel oil fly ash has been tested as low-cost carbon-based adsorbent of 2-chlorophenol (CP), 2-chloroaniline (CA) and methylene blue (MB) from aqueous solutions. In all the cases the adsorption was found to be of cooperative type. Different adsorption capacities were found for the three organics. Specifically, it was highest for 2-chlorophenol, reaching about 70 mg g(-1), and quite lower in the other two cases, that is about 47 and 36 mg g(-1) for methylene blue and 2-chloroaniline, respectively. Varying the initial pH and adding KCl were found to have different effects on the adsorption of the three organics. In particular, the presence of other ions had no effect on the adsorption of methylene blue, adverse effect in the case of 2-chlorophenol and enhancing effect in the case of 2-chloroaniline.


Asunto(s)
Compuestos de Anilina/aislamiento & purificación , Carbono , Clorofenoles/aislamiento & purificación , Azul de Metileno/aislamiento & purificación , Material Particulado , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Compuestos de Anilina/química , Clorofenoles/química , Ceniza del Carbón , Residuos Industriales , Azul de Metileno/química , Tamaño de la Partícula , Contaminantes Químicos del Agua/química
13.
Sci Total Environ ; 615: 1506-1517, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29055592

RESUMEN

Concrete industry is responsible of the most significant contribution to the global warming due to the large amount of substances with environmental impacts produced during its entire life cycle (production process, construction, maintenance, dismantlement, and scrapping). The most important issue characterizing the concrete industry is related to the constant growth of consumption of natural aggregates. The purpose of the present research is to apply the standard protocol of life cycle assessment to 3 different concrete mixtures composed by wastes from construction and demolition (C&D), marble sludge and cement kiln dust (CDK) in order to compare the environmental and energy impacts. The main purpose is to analyze the potentials (capabilities/benefits) of recycled aggregate concrete. The proposed model analyses 37 recovery possible scenarios. The results were analyzed with the software SimaPro© and with the life cycle impact assessment method Eco Indicator 99. The results show how it is possible to decide for the optimal solution in order to reduce emissions and impacts due to the concrete production.

14.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29996741

RESUMEN

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Asunto(s)
Materiales de Construcción , Tecnología Química Verde , Administración de Residuos/métodos , Álcalis/química , Compuestos de Aluminio/química , Silicatos de Aluminio/química , Compuestos de Calcio/química , Arcilla , Corrosión , Compuestos de Azufre/química
15.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29991308

RESUMEN

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Asunto(s)
Materiales de Construcción , Administración de Residuos/métodos , Compuestos de Calcio/química , Arcilla/química , Tecnología Química Verde/métodos , Óxidos/química , Reciclaje , Goma/química , Dióxido de Silicio/química
16.
Materials (Basel) ; 11(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271912

RESUMEN

This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

17.
Sci Rep ; 6: 31489, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27538586

RESUMEN

We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale.


Asunto(s)
Láseres de Semiconductores , Artefactos , Diseño de Equipo , Modelos Teóricos , Presión
18.
Materials (Basel) ; 9(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28773582

RESUMEN

The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

19.
J Hazard Mater ; 299: 181-91, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26124064

RESUMEN

In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance.

20.
Materials (Basel) ; 7(8): 5603-5616, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28788149

RESUMEN

Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA