Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(15): e113908, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306086

RESUMEN

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are linked in the onset and pathogenesis of numerous diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria during ER stress. The PERK signaling arm of the unfolded protein response (UPR) has emerged as a prominent ER stress-responsive signaling pathway that regulates diverse aspects of mitochondrial biology. Here, we show that PERK activity promotes adaptive remodeling of mitochondrial membrane phosphatidic acid (PA) to induce protective mitochondrial elongation during acute ER stress. We find that PERK activity is required for ER stress-dependent increases in both cellular PA and YME1L-dependent degradation of the intramitochondrial PA transporter PRELID1. These two processes lead to the accumulation of PA on the outer mitochondrial membrane where it can induce mitochondrial elongation by inhibiting mitochondrial fission. Our results establish a new role for PERK in the adaptive remodeling of mitochondrial phospholipids and demonstrate that PERK-dependent PA regulation adapts organellar shape in response to ER stress.


Asunto(s)
Respuesta de Proteína Desplegada , eIF-2 Quinasa , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Transducción de Señal
2.
J Med Internet Res ; 24(3): e31684, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35262495

RESUMEN

For over a decade, Scotland has implemented and operationalized a system of Safe Havens, which provides secure analytics platforms for researchers to access linked, deidentified electronic health records (EHRs) while managing the risk of unauthorized reidentification. In this paper, a perspective is provided on the state-of-the-art Scottish Safe Haven network, including its evolution, to define the key activities required to scale the Scottish Safe Haven network's capability to facilitate research and health care improvement initiatives. A set of processes related to EHR data and their delivery in Scotland have been discussed. An interview with each Safe Haven was conducted to understand their services in detail, as well as their commonalities. The results show how Safe Havens in Scotland have protected privacy while facilitating the reuse of the EHR data. This study provides a common definition of a Safe Haven and promotes a consistent understanding among the Scottish Safe Haven network and the clinical and academic research community. We conclude by identifying areas where efficiencies across the network can be made to meet the needs of population-level studies at scale.


Asunto(s)
Registros Electrónicos de Salud , Privacidad , Humanos , Escocia
3.
J Med Internet Res ; 24(12): e40035, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36322788

RESUMEN

BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintaining patient confidentiality and local governance procedures.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Reino Unido/epidemiología
4.
Proc Natl Acad Sci U S A ; 114(3): 516-521, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28057864

RESUMEN

Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca- structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP-induced cAMP synthesis as well as c-di-GMP-induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca- mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dictyostelium/genética , Proteínas de Escherichia coli/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Protozoarios , Mutación , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Esporas Protozoarias/genética , Esporas Protozoarias/crecimiento & desarrollo , Esporas Protozoarias/metabolismo
5.
J Allergy Clin Immunol ; 144(2): 470-481, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31158401

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a common, complex, and highly heritable inflammatory skin disease. Genome-wide association studies offer opportunities to identify molecular targets for drug development. A risk locus on chromosome 11q13.5 lies between 2 candidate genes, EMSY and LRRC32 (leucine-rich repeat-containing 32) but the functional mechanisms affecting risk of AD remain unclear. OBJECTIVES: We sought to apply a combination of genomic and molecular analytic techniques to investigate which genes are responsible for genetic risk at this locus and to define mechanisms contributing to atopic skin disease. METHODS: We used interrogation of available genomic and chromosome conformation data in keratinocytes, small interfering RNA (siRNA)-mediated knockdown in skin organotypic culture and functional assessment of barrier parameters, mass spectrometric global proteomic analysis and quantitative lipid analysis, electron microscopy of organotypic skin, and immunohistochemistry of human skin samples. RESULTS: Genomic data indicate active promoters in the genome-wide association study locus and upstream of EMSY; EMSY, LRRC32, and intergenic variants all appear to be within a single topologically associating domain. siRNA-knockdown of EMSY in organotypic culture leads to enhanced development of barrier function, reflecting increased expression of structural and functional proteins, including filaggrin and filaggrin-2, as well as long-chain ceramides. Conversely, overexpression of EMSY in keratinocytes leads to a reduction in markers of barrier formation. Skin biopsy samples from patients with AD show greater EMSY staining in the nucleus, which is consistent with an increased functional effect of this transcriptional control protein. CONCLUSION: Our findings demonstrate an important role for EMSY in transcriptional regulation and skin barrier formation, supporting EMSY inhibition as a therapeutic approach.


Asunto(s)
Dermatitis Atópica/inmunología , Regulación de la Expresión Génica/inmunología , Proteínas de Neoplasias/inmunología , Proteínas Nucleares/inmunología , Proteínas Represoras/inmunología , Piel/inmunología , Transcripción Genética/inmunología , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 11/inmunología , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Femenino , Proteínas Filagrina , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Piel/patología
6.
Mol Cell Proteomics ; 16(2): 310-326, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913581

RESUMEN

Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations.


Asunto(s)
Aspirina/farmacología , Lisina/análisis , Proteoma/química , Proteómica/métodos , Acetilación , Sitios de Unión , Cromatografía Liquida , Células HeLa , Histona Desacetilasas/metabolismo , Humanos , Marcaje Isotópico , Lisina/química , Lisina/efectos de los fármacos , Espectrometría de Masas en Tándem
7.
Hum Mol Genet ; 25(6): 1176-91, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26758872

RESUMEN

Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.


Asunto(s)
Distrofia Corneal Epitelial Juvenil de Meesmann/genética , Queratina-12/genética , Queratina-3/genética , Mutación Missense , Adulto , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Exones , Femenino , Heterocigoto , Humanos , Ratones , Ratones Transgénicos , Mutación , Linaje , Respuesta de Proteína Desplegada
8.
Am J Hum Genet ; 96(3): 440-7, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25683118

RESUMEN

Calpastatin is an endogenous specific inhibitor of calpain, a calcium-dependent cysteine protease. Here we show that loss-of-function mutations in calpastatin (CAST) are the genetic causes of an autosomal-recessive condition characterized by generalized peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads, which we propose to be given the acronym PLACK syndrome. In affected individuals with PLACK syndrome from three families of different ethnicities, we identified homozygous mutations (c.607dup, c.424A>T, and c.1750delG) in CAST, all of which were predicted to encode truncated proteins (p.Ile203Asnfs∗8, p.Lys142∗, and p.Val584Trpfs∗37). Immunohistochemistry shows that staining of calpastatin is reduced in skin from affected individuals. Transmission electron microscopy revealed widening of intercellular spaces with chromatin condensation and margination in the upper stratum spinosum in lesional skin, suggesting impaired intercellular adhesion as well as keratinocyte apoptosis. A significant increase of apoptotic keratinocytes was also observed in TUNEL assays. In vitro studies utilizing siRNA-mediated CAST knockdown revealed a role for calpastatin in keratinocyte adhesion. In summary, we describe PLACK syndrome, as a clinical entity of defective epidermal adhesion, caused by loss-of-function mutations in CAST.


Asunto(s)
Proteínas de Unión al Calcio/genética , Queilitis/genética , Queratosis/genética , Mutación , Enfermedades de la Uña/genética , Enfermedades de la Piel/genética , Adulto , Apoptosis/genética , Proteínas de Unión al Calcio/metabolismo , Adhesión Celular/genética , Epidermis/metabolismo , Femenino , Homocigoto , Humanos , Etiquetado Corte-Fin in Situ , Queratinocitos , Masculino , Persona de Mediana Edad , Linaje , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Piel/patología
9.
RNA ; 22(6): 839-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27022035

RESUMEN

RNA-seq is now the technology of choice for genome-wide differential gene expression experiments, but it is not clear how many biological replicates are needed to ensure valid biological interpretation of the results or which statistical tools are best for analyzing the data. An RNA-seq experiment with 48 biological replicates in each of two conditions was performed to answer these questions and provide guidelines for experimental design. With three biological replicates, nine of the 11 tools evaluated found only 20%-40% of the significantly differentially expressed (SDE) genes identified with the full set of 42 clean replicates. This rises to >85% for the subset of SDE genes changing in expression by more than fourfold. To achieve >85% for all SDE genes regardless of fold change requires more than 20 biological replicates. The same nine tools successfully control their false discovery rate at ≲5% for all numbers of replicates, while the remaining two tools fail to control their FDR adequately, particularly for low numbers of replicates. For future RNA-seq experiments, these results suggest that at least six biological replicates should be used, rising to at least 12 when it is important to identify SDE genes for all fold changes. If fewer than 12 replicates are used, a superior combination of true positive and false positive performances makes edgeR and DESeq2 the leading tools. For higher replicate numbers, minimizing false positives is more important and DESeq marginally outperforms the other tools.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica , ARN de Hongos/genética , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 112(27): 8187-92, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100914

RESUMEN

Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Membranas Artificiales , Fosfolípidos/química , Catálisis , Membrana Celular/metabolismo , Cobre/química , Cobre/metabolismo , Reacción de Cicloadición , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/síntesis química , Lípidos de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Químicos , Estructura Molecular , Fosfatidilcolinas/síntesis química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolípidos/biosíntesis , Fosfolípidos/síntesis química , Imagen de Lapso de Tiempo , Triazoles/síntesis química , Triazoles/química , Triazoles/metabolismo , Liposomas Unilamelares/química
11.
J Allergy Clin Immunol ; 139(4): 1228-1241, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27913303

RESUMEN

BACKGROUND: Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE: We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS: We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION: Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Catepsina H/metabolismo , Dermatitis Atópica/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Catepsina H/deficiencia , Dermatitis Atópica/patología , Proteínas Filagrina , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Reguladora Asociada a mTOR , Piel/metabolismo , Piel/patología
12.
BMC Genomics ; 18(1): 120, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143409

RESUMEN

BACKGROUND: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. RESULTS: An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. CONCLUSIONS: In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects.


Asunto(s)
Amoeba/genética , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcriptoma , Amoeba/clasificación , Clonación Molecular , Biología Computacional/métodos , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados
13.
J Am Chem Soc ; 139(10): 3607-3610, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28263576

RESUMEN

Cell transmembrane receptors play a key role in the detection of environmental stimuli and control of intracellular communication. G protein-coupled receptors constitute the largest transmembrane protein family involved in cell signaling. However, current methods for their functional reconstitution in biomimetic membranes remain both challenging and limited in scope. Herein, we describe the spontaneous reconstitution of adenosine A2A receptor (A2AR) during the de novo formation of synthetic liposomes via native chemical ligation. The approach takes advantage of a nonenzymatic and chemoselective method to rapidly generate A2AR embedded phospholiposomes from receptor solubilized in n-dodecyl-ß-d-maltoside analogs. In situ lipid synthesis for protein reconstitution technology proceeds in the absence of dialysis and/or detergent absorbents, and A2AR assimilation into synthetic liposomes can be visualized by microscopy and probed by radio-ligand binding.


Asunto(s)
Liposomas/metabolismo , Receptor de Adenosina A2A/metabolismo , Humanos , Liposomas/síntesis química , Liposomas/química , Modelos Moleculares , Estructura Molecular , Receptor de Adenosina A2A/química
14.
Bioinformatics ; 32(24): 3850-3851, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27559158

RESUMEN

MOTIVATION: The current generation of DNA sequencing technologies produce a large amount of data quickly. All of these data need to pass some form of quality control (QC) processing and checking before they can be used for any analysis. The large number of samples that are run through Illumina sequencing machines makes the process of QC an onerous and time-consuming task that requires multiple pieces of information from several sources. RESULTS: AlmostSignificant is an open-source platform for aggregating multiple sources of quality metrics as well as run and sample meta-data associated with DNA sequencing runs from Illumina sequencing machines. AlmostSignificant is a graphical platform to streamline the QC of DNA sequencing data, to store these data for future reference together with extra meta-data associated with the sequencing runs not typically retained. This simplifies the challenge of monitoring the volume of data produced by Illumina sequencers. AlmostSignificant has been used to track the quality of over 80 sequencing runs covering over 2500 samples produced over the last three years. AVAILABILITY AND IMPLEMENTATION: The code and documentation for AlmostSignificant is freely available at https://github.com/bartongroup/AlmostSignificant CONTACTS: c.cole@dundee.ac.uk or g.j.barton@dundee.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Exactitud de los Datos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Secuencia de Bases , Control de Calidad , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
15.
Nucleic Acids Res ; 43(W1): W389-94, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25883141

RESUMEN

JPred4 (http://www.compbio.dundee.ac.uk/jpred4) is the latest version of the popular JPred protein secondary structure prediction server which provides predictions by the JNet algorithm, one of the most accurate methods for secondary structure prediction. In addition to protein secondary structure, JPred also makes predictions of solvent accessibility and coiled-coil regions. The JPred service runs up to 94 000 jobs per month and has carried out over 1.5 million predictions in total for users in 179 countries. The JPred4 web server has been re-implemented in the Bootstrap framework and JavaScript to improve its design, usability and accessibility from mobile devices. JPred4 features higher accuracy, with a blind three-state (α-helix, ß-strand and coil) secondary structure prediction accuracy of 82.0% while solvent accessibility prediction accuracy has been raised to 90% for residues <5% accessible. Reporting of results is enhanced both on the website and through the optional email summaries and batch submission results. Predictions are now presented in SVG format with options to view full multiple sequence alignments with and without gaps and insertions. Finally, the help-pages have been updated and tool-tips added as well as step-by-step tutorials.


Asunto(s)
Estructura Secundaria de Proteína , Programas Informáticos , Algoritmos , Internet , Solventes/química
16.
Chembiochem ; 17(10): 886-9, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-26919463

RESUMEN

Liposomes form spontaneously by the assimilation of phospholipids, the primary component of cell membranes. Due to their unique ability to form selectively permeable bilayers in situ, they are widely used as nanocarriers for drug and small-molecule delivery. However, there is a lack of straightforward methodologies to encapsulate living microorganisms. Here we demonstrate the successful encapsulation of whole cells in phospholipid vesicles by using the inverse-emulsion technique of generating unilamellar vesicles. This method of liposome preparation allows for a facile encapsulation of large biomaterials that previously was not easily attainable. Using Escherichia coli as a model organism, we found that liposomes can protect the bacterium against external protease degradation and from harsh biological environments. Liposomes prepared by the inverse-emulsion method were also capable of encapsulating yeast and were found to be naturally susceptible to hydrolysis by enzymes such as phospholipases, thus highlighting their potential role as cell delivery carriers.


Asunto(s)
Emulsiones/química , Escherichia coli/química , Liposomas/química , Escherichia coli/fisiología , Colorantes Fluorescentes/química , Microscopía Fluorescente , Péptido Hidrolasas/metabolismo , Fosfatidilcolinas/química , Imagen de Lapso de Tiempo
17.
Bioinformatics ; 31(14): 2276-83, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25735772

RESUMEN

MOTIVATION: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. RESULTS: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from -6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. AVAILABILITY AND IMPLEMENTATION: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database.


Asunto(s)
Proteínas 14-3-3/metabolismo , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Sitios de Unión , Células HEK293 , Humanos , Redes Neurales de la Computación , Fosfopéptidos/química , Fosfoproteínas/química , Posición Específica de Matrices de Puntuación , Proteoma/metabolismo , Programas Informáticos , Máquina de Vectores de Soporte
18.
Bioinformatics ; 31(22): 3625-30, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26206307

RESUMEN

MOTIVATION: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. RESULTS: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. AVAILABILITY AND IMPLEMENTATION: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. CONTACT: g.j.barton@dundee.ac.uk.


Asunto(s)
Modelos Estadísticos , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Distribución Binomial , Perfilación de la Expresión Génica , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
19.
PLoS Genet ; 9(10): e1003867, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204292

RESUMEN

Alternative cleavage and polyadenylation influence the coding and regulatory potential of mRNAs and where transcription termination occurs. Although widespread, few regulators of this process are known. The Arabidopsis thaliana protein FPA is a rare example of a trans-acting regulator of poly(A) site choice. Analysing fpa mutants therefore provides an opportunity to reveal generic consequences of disrupting this process. We used direct RNA sequencing to quantify shifts in RNA 3' formation in fpa mutants. Here we show that specific chimeric RNAs formed between the exons of otherwise separate genes are a striking consequence of loss of FPA function. We define intergenic read-through transcripts resulting from defective RNA 3' end formation in fpa mutants and detail cryptic splicing and antisense transcription associated with these read-through RNAs. We identify alternative polyadenylation within introns that is sensitive to FPA and show FPA-dependent shifts in IBM1 poly(A) site selection that differ from those recently defined in mutants defective in intragenic heterochromatin and DNA methylation. Finally, we show that defective termination at specific loci in fpa mutants is shared with dicer-like 1 (dcl1) or dcl4 mutants, leading us to develop alternative explanations for some silencing roles of these proteins. We relate our findings to the impact that altered patterns of 3' end formation can have on gene and genome organisation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/genética , Terminación de la Transcripción Genética , Empalme Alternativo/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN/genética , Exones , Silenciador del Gen , Heterocromatina/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mutación , ARN Mensajero/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
20.
J Allergy Clin Immunol ; 136(5): 1268-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26073755

RESUMEN

BACKGROUND: Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. OBJECTIVE: We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. METHODS: Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. RESULTS: No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. CONCLUSIONS: SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.


Asunto(s)
Dermatitis/genética , Desmoplaquinas/genética , Hipersensibilidad/genética , Mutación Missense/genética , Síndrome Debilitante/genética , Niño , Preescolar , Análisis Mutacional de ADN , Dermatitis/diagnóstico , Desmogleína 1/genética , Progresión de la Enfermedad , Humanos , Hipersensibilidad/diagnóstico , Lactante , Recién Nacido , Masculino , Linaje , Estructura Terciaria de Proteína/genética , Piel/patología , Síndrome Debilitante/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA