Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902081

RESUMEN

Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.


Asunto(s)
Sarcopenia , Caracteres Sexuales , Femenino , Humanos , Masculino , Atrofia Muscular/metabolismo , Envejecimiento/metabolismo , Músculo Esquelético/metabolismo , Caquexia/metabolismo , Inflamación/metabolismo , Sarcopenia/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901738

RESUMEN

Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.


Asunto(s)
Histona Desacetilasas , Distrofia Muscular de Duchenne , Humanos , Histona Desacetilasas/metabolismo , Distrofia Muscular de Duchenne/genética , Carbamatos/farmacología , Músculo Esquelético/metabolismo , Inhibidores de Histona Desacetilasas/farmacología
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613534

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating adult-onset neurodegenerative disease, with ineffective therapeutic options. ALS incidence and prevalence depend on the sex of the patient. Histone deacetylase 4 (HDAC4) expression in skeletal muscle directly correlates with the progression of ALS, pointing to the use of HDAC4 inhibitors for its treatment. Contrarily, we have found that deletion of HDAC4 in skeletal muscle worsened the pathological features of ALS, accelerating and exacerbating skeletal muscle loss and negatively affecting muscle innervations in male SOD1-G93A (SOD1) mice. In the present work, we compared SOD1 mice of both sexes with the aim to characterize ALS onset and progression as a function of sex differences. We found a global sex-dependent effects on disease onset and mouse lifespan. We further investigated the role of HDAC4 in SOD1 females with a genetic approach, and discovered morpho-functional effects on skeletal muscle, even in the early phase of the diseases. The deletion of HDAC4 decreased muscle function and exacerbated muscle atrophy in SOD1 females, and had an even more dramatic effect in males. Therefore, the two sexes must be considered separately when studying ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Histona Desacetilasas , Enfermedades Neurodegenerativas , Factores Sexuales , Animales , Femenino , Masculino , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/genética , Ratones Transgénicos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805532

RESUMEN

Dilated cardiomyopathy (DCM) is a disease of multifactorial etiologies, the risk of which is increased by male sex and age. There are few therapeutic options for patients with DCM who would benefit from identification of common targetable pathways. We used bioinformatics to identify the Nmrk2 gene involved in nicotinamide adenine dinucleotde (NAD) coenzyme biosynthesis as activated in different mouse models and in hearts of human patients with DCM while the Nampt gene controlling a parallel pathway is repressed. A short NMRK2 protein isoform is also known as muscle integrin binding protein (MIBP) binding the α7ß1 integrin complex. We investigated the cardiac phenotype of Nmrk2-KO mice to establish its role in cardiac remodeling and function. Young Nmrk2-KO mice developed an eccentric type of cardiac hypertrophy in response to pressure overload rather than the concentric hypertrophy observed in controls. Nmrk2-KO mice developed a progressive DCM-like phenotype with aging, associating eccentric remodeling of the left ventricle and a decline in ejection fraction and showed a reduction in myocardial NAD levels at 24 months. In agreement with involvement of NMRK2 in integrin signaling, we observed a defect in laminin deposition in the basal lamina of cardiomyocytes leading to increased fibrosis at middle age. The α7 integrin was repressed at both transcript and protein level at 24 months. Nmrk2 gene is required to preserve cardiac structure and function, and becomes an important component of the NAD biosynthetic pathways during aging. Molecular characterization of compounds modulating this pathway may have therapeutic potential.


Asunto(s)
Envejecimiento/genética , Cardiomiopatía Dilatada/genética , NAD/metabolismo , Niacinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Envejecimiento/fisiología , Animales , Cardiomegalia/genética , Citosol/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Laminina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Niacinamida/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regulación hacia Arriba , Remodelación Ventricular/genética
5.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041358

RESUMEN

An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.


Asunto(s)
Biomarcadores/metabolismo , Caquexia/patología , Neoplasias del Colon/complicaciones , Fibras Musculares Esqueléticas/metabolismo , Animales , Caquexia/etiología , Caquexia/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/inervación , Trasplante de Neoplasias
6.
Biochim Biophys Acta ; 1849(3): 309-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25598319

RESUMEN

Epigenetics is defined as heritable information other than the DNA sequence itself. The concept implies that the regulation of gene expression is a highly complex process in which epigenetics plays a major role that ranges from fine-tuning to permanent gene activation/deactivation. Skeletal muscle is the main tissue involved in locomotion and energy metabolism in the body, accounting for at least 40% of the body mass. Body mass and function vary according to age but also quickly adapt to both physiological and pathological cues. Besides transcriptional mechanisms that control muscle differentiation, postnatal growth and remodeling, there are numerous epigenetic mechanisms of regulation that modulate muscle gene expression. In this review, we describe and discuss only some of the mechanisms underlying epigenetic regulation, such as DNA methylation, histone modifications and microRNAs, which we believe are crucial to skeletal muscle development and disease.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Acetilación , Metilación de ADN , Histonas , Homeostasis/genética , Humanos , MicroARNs , Músculo Esquelético/metabolismo , Procesamiento Proteico-Postraduccional/genética
7.
J Cell Sci ; 127(Pt 21): 4589-601, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25179606

RESUMEN

Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.


Asunto(s)
Hipertrofia/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Desmina/genética , Desmina/metabolismo , Hipertrofia/patología , Proteínas de Filamentos Intermediarios/genética , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/ultraestructura , Enfermedades Musculares/genética
8.
Int J Med Sci ; 13(3): 206-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941581

RESUMEN

BACKGROUND: Diets enriched with n-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to exert a positive impact on muscle diseases. Flaxseed is one of the richest sources of n-3 PUFA acid α-linolenic acid (ALA). The aim of this study was to assess the effects of flaxseed and ALA in models of skeletal muscle degeneration characterized by high levels of Tumor Necrosis Factor-α (TNF). METHODS: The in vivo studies were carried out on dystrophic hamsters affected by muscle damage associated with high TNF plasma levels and fed with a long-term 30% flaxseed-supplemented diet. Differentiating C2C12 myoblasts treated with TNF and challenged with ALA represented the in vitro model. Skeletal muscle morphology was scrutinized by applying the Principal Component Analysis statistical method. Apoptosis, inflammation and myogenesis were analyzed by immunofluorescence. Finally, an in silico analysis was carried out to predict the possible pathways underlying the effects of n-3 PUFAs. RESULTS: The flaxseed-enriched diet protected the dystrophic muscle from apoptosis and preserved muscle myogenesis by increasing the myogenin and alpha myosin heavy chain. Moreover, it restored the normal expression pattern of caveolin-3 thereby allowing protein retention at the sarcolemma. ALA reduced TNF-induced apoptosis in differentiating myoblasts and prevented the TNF-induced inhibition of myogenesis, as demonstrated by the increased expression of myogenin, myosin heavy chain and caveolin-3, while promoting myotube fusion. The in silico investigation revealed that FAK pathways may play a central role in the protective effects of ALA on myogenesis. CONCLUSIONS: These findings indicate that flaxseed may exert potent beneficial effects by preserving skeletal muscle regeneration and homeostasis partly through an ALA-mediated action. Thus, dietary flaxseed and ALA may serve as a useful strategy for treating patients with muscle dystrophies.


Asunto(s)
Lino , Músculo Esquelético/fisiología , Regeneración/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cricetinae , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Masculino , Mesocricetus , Ratones , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/dietoterapia , Distrofia Muscular Animal/fisiopatología , Mioblastos Esqueléticos/efectos de los fármacos , Regeneración/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Ácido alfa-Linolénico/farmacología
9.
Int J Mol Sci ; 17(5)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27213347

RESUMEN

The DNA damage response (DDR) is a molecular mechanism that cells have evolved to sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as "fatty acids biosynthesis/metabolism", "extracellular matrix-receptor interaction" and "signaling regulating the pluripotency of stem cells", appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds.


Asunto(s)
Envejecimiento/metabolismo , Daño del ADN , Dieta , MicroARNs/metabolismo , Neoplasias , ARN Neoplásico/metabolismo , Simulación por Computador , Femenino , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/prevención & control
10.
Circ Res ; 112(7): 1035-45, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23426017

RESUMEN

RATIONALE: Vascular smooth muscle (SM) cell phenotypic modulation plays an important role in arterial stiffening associated with aging. Serum response factor (SRF) is a major transcription factor regulating SM genes involved in maintenance of the contractile state of vascular SM cells. OBJECTIVE: We investigated whether SRF and its target genes regulate intrinsic SM tone and thereby arterial stiffness. METHODS AND RESULTS: The SRF gene was inactivated SM-specific knockout of SRF (SRF(SMKO)) specifically in vascular SM cells by injection of tamoxifen into adult transgenic mice. Fifteen days later, arterial pressure and carotid thickness were lower in SRF(SMKO) than in control mice. The carotid distensibility/pressure and elastic modulus/wall stress curves showed a greater arterial elasticity in SRF(SMKO) without modification in collagen/elastin ratio. In SRF(SMKO), vasodilation was decreased in aorta and carotid arteries, whereas a decrease in contractile response was found in mesenteric arteries. By contrast, in mice with inducible SRF overexpression, the in vitro contractile response was significantly increased in all arteries. Without endothelium, the contraction was reduced in SRF(SMKO) compared with control aortic rings owing to impairment of the NO pathway. Contractile components (SM-actin and myosin light chain), regulators of the contractile response (myosin light chain kinase, myosin phosphatase target subunit 1, and protein kinase C-potentiated myosin phosphatase inhibitor) and integrins were reduced in SRF(SMKO). CONCLUSIONS: SRF controls vasoconstriction in mesenteric arteries via vascular SM cell phenotypic modulation linked to changes in contractile protein gene expression. SRF-related decreases in vasomotor tone and cell-matrix attachment increase arterial elasticity in large arteries.


Asunto(s)
Músculo Liso Vascular/fisiología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/fisiología , Rigidez Vascular/fisiología , Vasoconstricción/fisiología , Envejecimiento/fisiología , Animales , Aorta/fisiología , Presión Sanguínea/fisiología , Arterias Carótidas/fisiología , Modelos Animales de Enfermedad , Elasticidad , Arterias Mesentéricas/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Tono Muscular/fisiología , Músculo Liso Vascular/ultraestructura , Cadenas Ligeras de Miosina/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Túnica Media/fisiología , Vasodilatación/fisiología
11.
Int J Med Sci ; 12(4): 336-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25897295

RESUMEN

The multipotency of scaffolds is a new concept. Skeletal muscle acellular scaffolds (MAS) implanted at the interface of Tibialis Anterior/tibial bone and masseter muscle/mandible bone in a murine model were colonized by muscle cells near the host muscle and by bone-cartilaginous tissues near the host bone, thus highlighting the importance of the environment in directing cell homing and differentiation. These results unveil the multipotency of MAS and point to the potential of this new technique as a valuable tool in musculo-skeletal tissue regeneration.


Asunto(s)
Matriz Extracelular/química , Músculo Esquelético/fisiología , Andamios del Tejido/química , Animales , Diferenciación Celular , Movimiento Celular , Femenino , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Células Madre Multipotentes/citología , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología , Regeneración , Nicho de Células Madre , Ingeniería de Tejidos/métodos
12.
ScientificWorldJournal ; 2013: 237260, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533342

RESUMEN

Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is, BALB/c mice. We found that only a minority of the population of one of these substrains, the BALB/c J, performs spontaneous physical activity. In addition, the runners of this substrain cover a significantly smaller distance than the average runners of two other substrains, namely, the BALB/c ByJ and the BALB/c AnNCrl. The latter shows a striking level of voluntary activity, with the average distance run/day reaching up to about 12 kilometers. These runners are not outstanders, but they represent the majority of the population, with important scientific and economic fallouts to be taken into account during experimental planning. Spontaneous activity persists in pathological conditions, such as cancer-associated cachexia. This important amount of physical activity results in a minor muscle adaptation to endurance exercise over a three-week period; indeed, only a nonsignificant increase in NADH transferase+ fibers occurs in this time frame.


Asunto(s)
Conducta Animal/fisiología , Ratones Endogámicos BALB C , Actividad Motora , Resistencia Física/fisiología , Animales , Peso Corporal , Femenino , Inmunohistoquímica , Ratones , Mitocondrias/fisiología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/fisiología , Fuerza Muscular , NADH NADPH Oxidorreductasas/análisis , Oxidación-Reducción , Factores de Tiempo
13.
Eur J Transl Myol ; 32(1)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35244364

RESUMEN

Sergio Adamo prematurely left us on January 7th 2022, just one year after his retirement, leaving his family, friends and colleagues deeply sad and grieving. Sergio was a full Professor of Histology and Embryology at the Sapienza University of Rome. Since the foundation of the Institute of Histology and Embryology more than 50 years ago, he dedicated himself to the institution, research, and teaching with integrity, generosity, and a great sense of teamwork. Sergio's main research interests have been the mechanisms of myogenesis, muscle homeostasis and regeneration under normal and pathological conditions. Most relevant results obtained by Sergio and his collaborators indicate novel functions for the neurohypophyseal hormones, vasopressin and oxytocin, upon striated muscle differentiation, trophism, and homeostasis. Here we like to give the proper tribute to a mentor, a colleague and a sincere friend. He left an indelible mark on the professional and personal lives of all of us and his absence provokes a profound sense of emptiness.

14.
Front Physiol ; 13: 706003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250605

RESUMEN

Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.

15.
Eur J Transl Myol ; 32(1)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35234025

RESUMEN

Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise¼, is now being reprinted for the second issue of the «Ejtm Seminal Paper Series¼. In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.

16.
Metabolites ; 12(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422289

RESUMEN

Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.

17.
J Cachexia Sarcopenia Muscle ; 13(2): 1339-1359, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170869

RESUMEN

BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.


Asunto(s)
Histona Desacetilasas , Distrofia Muscular de Duchenne , Adolescente , Animales , Niño , Citoplasma/metabolismo , Citoplasma/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Proteínas Represoras
18.
Cells ; 11(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563712

RESUMEN

Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome-a conditioned medium released by heat shock protein 60 (Hsp60)-overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.


Asunto(s)
Caquexia , Chaperonina 60 , Caquexia/metabolismo , Chaperonina 60/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Proteómica , Calidad de Vida
19.
iScience ; 25(11): 105480, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388980

RESUMEN

Skeletal muscle repair is accomplished by satellite cells (MuSCs) in cooperation with interstitial stromal cells (ISCs), but the relationship between the function of these cells and the metabolic state of myofibers remains unclear. This study reports an altered proportion of MuSCs and ISCs (including adipogenesis-regulatory cells; Aregs) induced by the transgenic overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the myofibers (MCK-PGC-1α mice). Although PGC-1α-driven increase of MuSCs does not accelerate muscle regeneration, myogenic progenitors isolated from MCK-PGC-1α mice and transplanted into intact and regenerating muscles are more prone to fuse with recipient myofibers than those derived from wild-type donors. Moreover, both young and aged MCK-PGC-1α animals exhibit reduced perilipin-positive areas when challenged with an adipogenic stimulus, demonstrating low propensity to accumulate adipocytes within the muscle. Overall, these results unveil that increased PGC-1α expression in the myofibers favors pro-myogenic and anti-adipogenic cell populations in the skeletal muscle.

20.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445790

RESUMEN

Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients' quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA