Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 76: 258-267, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30550929

RESUMEN

Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions by signaling through six known G-protein-coupled receptors (LPA1-LPA6). In the central nervous system (CNS), LPA mediates a wide range of effects, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and contributions to pain, schizophrenia and hydrocephalus. We recently reported that LPA-LPA1 signaling mediates functional deficits and myelin loss after spinal cord injury (SCI). Here, we provide clear evidence on the deleterious contribution of another LPA receptor, LPA2, to myelin loss after SCI. We found that LPA2 is constitutively expressed in the spinal cord parenchyma and its transcripts were up-regulated after contusion injury, in part, by microglial cells. We also found that the demyelinating lesion triggered by intraspinal injection of LPA into the undamaged spinal cord was markedly reduced in the lack of LPA2. Similarly, LPA2 deficient mice showed enhanced motor skills and myelin sparing after SCI. To gain insights into the detrimental actions of LPA2 in spinal cord we performed cell culture studies. These experiments revealed that, similar to LPA1, activation of microglia LPA2 led to oligodendrocyte cell death. Moreover, we also found that the cytotoxic effects underlaying microglial LPA-LPA2 axis were mediated by the release of purines by microglia and the activation of P2X7 receptor on oligodendrocytes. Overall, this study provides new mechanistic insights into how LPA contributes to SCI physiopathology, and suggest that targeting LPA2 could be a novel therapeutic approach for the treatment of acute SCI.


Asunto(s)
Receptores del Ácido Lisofosfatídico/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Muerte Celular/fisiología , Enfermedades Desmielinizantes , Femenino , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Neuroinmunomodulación/fisiología , Oligodendroglía/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
2.
Proc Natl Acad Sci U S A ; 113(5): 1411-6, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787859

RESUMEN

IL-37, a member of the IL-1 family, broadly reduces innate inflammation as well as acquired immunity. Whether the antiinflammatory properties of IL-37 extend to the central nervous system remains unknown, however. In the present study, we subjected mice transgenic for human IL-37 (hIL-37tg) and wild-type (WT) mice to spinal cord contusion injury and then treated them with recombinant human IL-37 (rIL-37). In the hIL-37tg mice, the expression of IL-37 was barely detectable in the uninjured cords, but was strongly induced at 24 h and 72 h after the spinal cord injury (SCI). Compared with WT mice, hIL-37tg mice exhibited increased myelin and neuronal sparing and protection against locomotor deficits, including 2.5-fold greater speed in a forced treadmill challenge. Reduced levels of cytokines (e.g., an 80% reduction in IL-6) were observed in the injured cords of hIL-37tg mice, along with lower numbers of blood-borne neutrophils, macrophages, and activated microglia. We treated WT mice with a single intraspinal injection of either full-length or processed rIL-37 after the injury and found that the IL-37-treated mice had significantly enhanced locomotor skills in an open field using the Basso Mouse Scale, as well as supported faster speed on a mechanical treadmill. Treatment with both forms of rIL-37 led to similar beneficial effects on locomotor recovery after SCI. This study presents novel data indicating that IL-37 suppresses inflammation in a clinically relevant model of SCI, and suggests that rIL-37 may have therapeutic potential for the treatment of acute SCI.


Asunto(s)
Interleucina-1/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Quimiocinas/antagonistas & inhibidores , Quimiocinas/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Interleucina-1/genética , Ratones , ARN Mensajero/genética , Traumatismos de la Médula Espinal/metabolismo
3.
J Neurosci ; 37(14): 3956-3971, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28270575

RESUMEN

Following spinal cord injury (SCI), astrocytes demonstrate long-lasting reactive changes, which are associated with the persistence of neuropathic pain and motor dysfunction. We previously demonstrated that upregulation of trkB.T1, a truncated isoform of the brain-derived neurotrophic factor receptor (BDNF), contributes to gliosis after SCI, but little is known about the effects of trkB.T1 on the function of astrocytes. As trkB.T1 is the sole isoform of trkB receptors expressed on astrocytes, we examined the function of trkB.T1-driven astrocytes in vitro and in vivo Immunohistochemistry showed that trkB.T1+ cells were significantly upregulated 7 d after injury, with sustained elevation in white matter through 8 weeks. The latter increase was predominantly found in astrocytes. TrkB.T1 was also highly expressed by neurons and microglia/macrophages at 7 d after injury and declined by 8 weeks. RNA sequencing of cultured astrocytes derived from trkB.T1+/+ (WT) and trkB.T1-/- (KO) mice revealed downregulation of migration and proliferation pathways in KO astrocytes. KO astrocytes also exhibited slower migration/proliferation in vitro in response to FBS or BDNF compared with WT astrocytes. Reduced proliferation of astrocytes was also confirmed after SCI in astrocyte-specific trkB.T1 KO mice; using mechanical allodynia and pain-related measurements on the CatWalk, these animals also showed reduced hyperpathic responses, along with improved motor coordination. Together, our data indicate that trkB.T1 in astrocytes contributes to neuropathic pain and neurological dysfunction following SCI, suggesting that trkB.T1 may provide a novel therapeutic target for SCI.SIGNIFICANCE STATEMENT Neuropathic pain after spinal cord injury (SCI) may in part be caused by upregulation of the brain-derived neurotrophic factor (BDNF) receptor trkB.T1, a truncated isoform of BDNF. TrkB.T1 is the only isoform of tropomyosin-related receptor kinase type B (trkB) receptors expressed on astrocytes. Here, we showed that trkB.T1 is significantly increased in the injured mouse spinal cord, where it is predominantly found in astrocytes. RNA sequencing of cultured astrocytes demonstrated downregulation of migration and proliferation pathways in trkB.T1 KO astrocytes. This was validated in vivo, where deletion of trkB.T1 in astrocytes reduced cell proliferation and migration. After SCI, astrocyte-specific trkB.T1 KO mice showed reduced hyperpathic responses and improved motor coordination. Therefore, the trkB.T1 receptor plays a significant pathophysiological role after SCI, and may provide a novel therapeutic target for SCI.


Asunto(s)
Astrocitos/metabolismo , Actividad Motora/fisiología , Neuralgia/metabolismo , Receptor trkB/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/fisiopatología , Isoformas de Proteínas/metabolismo , Receptor trkB/deficiencia , Traumatismos de la Médula Espinal/fisiopatología
4.
Cell Death Dis ; 10(11): 839, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685802

RESUMEN

Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.


Asunto(s)
Angiopoyetina 1/metabolismo , Contusiones/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Animales , Contusiones/patología , Ratones , MicroARNs/antagonistas & inhibidores , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA