Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 14(1): 6213, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813842

RESUMEN

Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.


Asunto(s)
Células Epiteliales , Células Madre , Embarazo , Femenino , Animales , Células Epiteliales/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Linaje de la Célula , Transducción de Señal , Glándulas Mamarias Animales/metabolismo
2.
Biology (Basel) ; 12(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38132283

RESUMEN

Alkylphospholipids (APLs) have been studied as anticancer drugs that interfere with biological membranes without targeting DNA. Although their mechanism of action is not fully elucidated yet, it is known that they disrupt the intracellular trafficking of cholesterol and its metabolism. Here, we analyzed whether APLs could also interfere with mitochondrial function. For this purpose, we used HT29 colorectal cancer cells, derived from a primary tumor, and SW620 colorectal cancer cells, derived from a metastasis site. After treatment with the APLs miltefosine and perifosine, we analyzed various mitochondrial parameters, including mitochondrial mass, cardiolipin content, mitochondrial membrane potential, H2O2 production, the levels of oxidative phosphorylation (OXPHOS) complexes, metabolic enzymes activity, the oxygen consumption rate, and the levels of apoptosis and autophagy markers. APLs, especially perifosine, increased mitochondrial mass while OXPHOS complexes levels were decreased without affecting the total oxygen consumption rate. Additionally, we observed an increase in pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH) levels and a decrease in lactate dehydrogenase (LDH) activity, suggesting a metabolic rewiring induced by perifosine. These alterations led to higher mitochondrial membrane potential, which was potentiated by decreased uncoupling protein 2 (UCP2) levels and increased reactive oxygen species (ROS) production. Consequently, perifosine induced an imbalance in mitochondrial function, resulting in higher ROS production that ultimately impacted cellular viability.

3.
Dev Cell ; 56(12): 1727-1741.e7, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34004159

RESUMEN

Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models. Mechanistically, we have found that ectopic expression of Rank or exposure to Rankl induces senescence, even in the absence of other oncogenic mutations. Rank leads to DNA damage and senescence through p16/p19. Moreover, RANK-induced senescence is essential for Rank-driven stemness, and although initially translates into delayed tumor growth, eventually promotes tumor progression and metastasis. We uncover a dual role for Rank in the mammary epithelia: Rank induces senescence and stemness, delaying tumor initiation but increasing tumor aggressiveness.


Asunto(s)
Neoplasias de la Mama/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Neoplasias Mamarias Animales/genética , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Envejecimiento/genética , Animales , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Daño del ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Experimentales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
4.
Mol Cancer Res ; 17(10): 2063-2076, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31320385

RESUMEN

Taxanes are standard therapy in clinical practice for metastatic breast cancer; however, primary or acquired chemoresistance are a common cause of mortality. Breast cancer patient-derived xenografts (PDX) are powerful tools for the study of cancer biology and drug treatment response. Specific DNA methylation patterns have been associated to different breast cancer subtypes but its association with chemoresistance remains unstudied. Aiming to elucidate docetaxel resistance mechanisms, we performed genome-wide DNA methylation in breast cancer PDX models, including luminal and triple-negative breast cancer (TNBC) models sensitive to docetaxel, their matched models after emergence of chemoresistance and residual disease after short-term docetaxel treatment. We found that DNA methylation profiles from breast cancer PDX models maintain the subtype-specific methylation patterns of clinical samples. Two main DNA methylation clusters were found in TNBC PDX and remain stable during the emergence of docetaxel resistance; however, some genes/pathways were differentially methylated according to docetaxel response. A DNA methylation signature of resistance able to segregate TNBC based on chemotherapy response was identified. Transcriptomic profiling of selected sensitive/resistant pairs and integrative analysis with methylation data demonstrated correlation between some differentially methylated and expressed genes in docetaxel-resistant TNBC PDX models. Multiple gene expression changes were found after the emergence of docetaxel resistance in TNBC. DNA methylation and transcriptional changes identified between docetaxel-sensitive and -resistant TNBC PDX models or residual disease may have predictive value for chemotherapy response in TNBC. IMPLICATIONS: Subtype-specific DNA methylation patterns are maintained in breast cancer PDX models. While no global methylation changes were found, we uncovered differentially DNA methylated and expressed genes/pathways associated with the emergence of docetaxel resistance in TNBC.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Metilación de ADN/genética , Docetaxel/uso terapéutico , Transcriptoma/genética , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Docetaxel/farmacología , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Res ; 79(16): 4258-4270, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31213465

RESUMEN

Taxanes are the mainstay of treatment in triple-negative breast cancer (TNBC), with de novo and acquired resistance limiting patient's survival. To investigate the genetic basis of docetaxel resistance in TNBC, exome sequencing was performed on matched TNBC patient-derived xenografts (PDX) sensitive to docetaxel and their counterparts that developed resistance in vivo upon continuous drug exposure. Most mutations, small insertions/deletions, and copy number alterations detected in the initial TNBC human metastatic samples were maintained after serial passages in mice and emergence of resistance. We identified a chromosomal amplification of chr12p in a human BRCA1-mutated metastatic sample and the derived chemoresistant PDX, but not in the matched docetaxel-sensitive PDX tumor. Chr12p amplification was validated in a second pair of docetaxel-sensitive/resistant BRCA1-mutated PDXs and after short-term docetaxel treatment in several TNBC/BRCA1-mutated PDXs and cell lines, as well as during metastatic recurrence in a patient with BRCA1-mutated breast cancer who had progressed on docetaxel treatment. Analysis of clinical data indicates an association between chr12p amplification and patients with TNBC/basal-like breast cancer, a BRCA1 mutational signature, and poor survival after chemotherapy. Detection of chr12p amplification in a cohort of TNBC PDX models was associated with an improved response to carboplatin. Our findings reveal tumor clonal dynamics during chemotherapy treatments and suggest that a preexisting population harboring chr12p amplification is associated with the emergence of docetaxel resistance and carboplatin responsiveness in TNBC/BRCA1-mutated tumors. SIGNIFICANCE: Chr12p copy number gains indicate rapid emergence of resistance to docetaxel and increased sensitivity to carboplatin, therefore sequential docetaxel/carboplatin treatment could improve survival in TNBC/BRCA1 patients. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4258/F1.large.jpg.


Asunto(s)
Carboplatino/farmacología , Cromosomas Humanos Par 12 , Docetaxel/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Animales , Proteína BRCA1/genética , Línea Celular Tumoral , Exoma , Femenino , Humanos , Ratones , Mutación , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/mortalidad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA