Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 69(3): e12913, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332619

RESUMEN

Foraminifera include diverse shell-building lineages found in a wide array of aquatic habitats from the deep-sea to intertidal zones to brackish and freshwater ecosystems. Recent estimates of morphological and molecular foraminifera diversity have increased the knowledge of foraminiferal diversity, which is critical as these lineages are used as bioindicators of past and present environmental perturbation. However, a comparative analysis of foraminiferal biodiversity between their major habitats (freshwater, brackish, intertidal, and marine) is underexplored, particularly using molecular tools. Here, we present a metabarcoding survey of foraminiferal diversity across different ecosystems using newly designed foraminifera-specific primers that target the hypervariable regions of the foraminifera SSU-rRNA gene (~250-300 bp long). We tested these primer sets on four foraminifera species and then across several environments: the intertidal zone, coastal ecosystems, and freshwater vernal pools. We retrieved 655 operational taxonomic units (OTUs); the majority of which are undetermined taxa that have no closely matching sequences in the reference database. Furthermore, we identified 163 OTUs with distinct habitat preferences. Most of the observed OTUs belonged to lineages of single-chambered foraminifera, including poorly explored freshwater foraminifera which encompass a clade of Reticulomyxa-like forms. Our pilot study provides the community with an additional set of newly designed and taxon-specific primers to elucidate foraminiferal diversity across different habitats.


Asunto(s)
Foraminíferos , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Foraminíferos/genética , Sedimentos Geológicos , Proyectos Piloto
2.
J Hered ; 112(1): 140-144, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33538295

RESUMEN

Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline-soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics.


Asunto(s)
Elementos Transponibles de ADN , Eucariontes/genética , Evolución Molecular , Modelos Genéticos , Epigénesis Genética
3.
J Exp Zool B Mol Dev Evol ; 332(8): 349-355, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31709760

RESUMEN

John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Simbiosis/genética , Adaptación Biológica , Genoma , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA