Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8000): 905-911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355794

RESUMEN

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Asunto(s)
Artefactos , Rayos Láser , Mioglobina , Cristalografía/instrumentación , Cristalografía/métodos , Electrones , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efectos de la radiación , Fotones , Conformación Proteica/efectos de la radiación , Teoría Cuántica , Rayos X
2.
Nucleic Acids Res ; 50(13): 7680-7696, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801857

RESUMEN

Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Šand further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus , Proteínas Bacterianas/metabolismo , Daño del ADN , Reparación del ADN , ADN Circular/metabolismo , Deinococcus/genética , Deinococcus/metabolismo
3.
Mol Cell ; 57(6): 1011-1021, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25728769

RESUMEN

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Eosinófilos/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Celulitis (Flemón)/metabolismo , Celulitis (Flemón)/patología , Proteínas de Unión al ADN/toxicidad , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Eosinofilia/metabolismo , Eosinofilia/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Escherichia coli/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/fisiología , Ratones Endogámicos C57BL , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Vesículas Secretoras/metabolismo , Piel/efectos de los fármacos , Piel/patología
4.
Proc Natl Acad Sci U S A ; 117(8): 4142-4151, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047034

RESUMEN

Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.


Asunto(s)
Cristalografía por Rayos X/métodos , Muramidasa/química , Sincrotrones , Temperatura , Cristalización
5.
Biophys J ; 121(15): 2849-2872, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35794830

RESUMEN

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 µs after absorption of a first photon.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo
6.
PLoS Pathog ; 16(9): e1008826, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32970778

RESUMEN

The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection.


Asunto(s)
Bacillus thuringiensis/metabolismo , Infecciones Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción GATA/metabolismo , Sistema de Señalización de MAP Quinasas , Transcripción Genética , Animales , Bacillus thuringiensis/patogenicidad , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción GATA/genética
7.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35959919

RESUMEN

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Asunto(s)
Escherichia coli , Microscopía , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/química
8.
Nature ; 539(7627): 43-47, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27680699

RESUMEN

BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine- and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.


Asunto(s)
Bacillus/química , Toxinas Bacterianas/química , Culicidae , Insecticidas/química , Larva , Rayos Láser , Animales , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Culicidae/metabolismo , Concentración de Iones de Hidrógeno , Larva/química , Larva/metabolismo , Modelos Moleculares , Multimerización de Proteína , Proteolisis , Tirosina/química
9.
Proc Natl Acad Sci U S A ; 116(10): 4256-4264, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787192

RESUMEN

Assembly of paramyxoviral nucleocapsids on the RNA genome is an essential step in the viral cycle. The structural basis of this process has remained obscure due to the inability to control encapsidation. We used a recently developed approach to assemble measles virus nucleocapsid-like particles on specific sequences of RNA hexamers (poly-Adenine and viral genomic 5') in vitro, and determined their cryoelectron microscopy maps to 3.3-Å resolution. The structures unambiguously determine 5' and 3' binding sites and thereby the binding-register of viral genomic RNA within nucleocapsids. This observation reveals that the 3' end of the genome is largely exposed in fully assembled measles nucleocapsids. In particular, the final three nucleotides of the genome are rendered accessible to the RNA-dependent RNA polymerase complex, possibly enabling efficient RNA processing. The structures also reveal local and global conformational changes in the nucleoprotein upon assembly, in particular involving helix α6 and helix α13 that form edges of the RNA binding groove. Disorder is observed in the bound RNA, localized at one of the two backbone conformational switch sites. The high-resolution structure allowed us to identify putative nucleobase interaction sites in the RNA-binding groove, whose impact on assembly kinetics was measured using real-time NMR. Mutation of one of these sites, R195, whose sidechain stabilizes both backbone and base of a bound nucleic acid, is thereby shown to be essential for nucleocapsid-like particle assembly.


Asunto(s)
Microscopía por Crioelectrón/métodos , Virus del Sarampión/química , Virus del Sarampión/metabolismo , Nucleocápside/química , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Ensamble de Virus , Sitios de Unión , Genoma Viral , Cinética , Imagen por Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Paramyxoviridae/química , Paramyxoviridae/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , ARN Viral/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
10.
Proc Natl Acad Sci U S A ; 115(10): E2220-E2228, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476011

RESUMEN

The gram-negative pathogen Providencia stuartii forms floating communities within which adjacent cells are in apparent contact, before depositing as canonical surface-attached biofilms. Because porins are the most abundant proteins in the outer membrane of gram-negative bacteria, we hypothesized that they could be involved in cell-to-cell contact and undertook a structure-function relationship study on the two porins of P. stuartii, Omp-Pst1 and Omp-Pst2. Our crystal structures reveal that these porins can self-associate through their extracellular loops, forming dimers of trimers (DOTs) that could enable cell-to-cell contact within floating communities. Support for this hypothesis was obtained by studying the porin-dependent aggregation of liposomes and model cells. The observation that facing channels are open in the two porin structures suggests that DOTs could not only promote cell-to-cell contact but also contribute to intercellular communication.


Asunto(s)
Biopelículas , Porinas/metabolismo , Providencia/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Dimerización , Porinas/química , Porinas/genética , Providencia/química , Providencia/genética
11.
J Enzyme Inhib Med Chem ; 35(1): 498-505, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31914836

RESUMEN

Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer's disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.


Asunto(s)
Amidas/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Colorantes Fluorescentes/farmacología , Amidas/síntesis química , Amidas/química , Animales , Butirilcolinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cristalografía por Rayos X , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Ratones , Modelos Moleculares , Estructura Molecular
12.
Proc Natl Acad Sci U S A ; 112(20): 6365-70, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25918405

RESUMEN

The paired helical filaments (PHF) formed by the intrinsically disordered human protein tau are one of the pathological hallmarks of Alzheimer disease. PHF are fibers of amyloid nature that are composed of a rigid core and an unstructured fuzzy coat. The mechanisms of fiber formation, in particular the role that hydration water might play, remain poorly understood. We combined protein deuteration, neutron scattering, and all-atom molecular dynamics simulations to study the dynamics of hydration water at the surface of fibers formed by the full-length human protein htau40. In comparison with monomeric tau, hydration water on the surface of tau fibers is more mobile, as evidenced by an increased fraction of translationally diffusing water molecules, a higher diffusion coefficient, and increased mean-squared displacements in neutron scattering experiments. Fibers formed by the hexapeptide (306)VQIVYK(311) were taken as a model for the tau fiber core and studied by molecular dynamics simulations, revealing that hydration water dynamics around the core domain is significantly reduced after fiber formation. Thus, an increase in water dynamics around the fuzzy coat is proposed to be at the origin of the experimentally observed increase in hydration water dynamics around the entire tau fiber. The observed increase in hydration water dynamics is suggested to promote fiber formation through entropic effects. Detection of the enhanced hydration water mobility around tau fibers is conjectured to potentially contribute to the early diagnosis of Alzheimer patients by diffusion MRI.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Amiloide/química , Proteínas de la Membrana/metabolismo , Agregación Patológica de Proteínas/metabolismo , Agua/química , Amiloide/biosíntesis , Humanos , Microscopía Electrónica , Modelos Químicos , Simulación de Dinámica Molecular
13.
Molecules ; 23(3)2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29534488

RESUMEN

Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and investigated for their potential use against this disease. Here, we have explored two alternative approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain permeability, thereby emerging as interesting leads against myasthenia gravis.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aminoacridinas/síntesis química , Aminoquinolinas/síntesis química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/química , Aminoacridinas/química , Aminoacridinas/farmacología , Aminoquinolinas/química , Aminoquinolinas/farmacología , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Regulación hacia Abajo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Modelos Moleculares , Estructura Molecular , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/enzimología , Relación Estructura-Actividad , Tacrina/química
14.
Bioorg Med Chem ; 25(2): 633-645, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27908752

RESUMEN

In the brains of patients with Alzheimer's disease, the enzymatic activities of butyrylcholinesterase (BChE) and monoamine oxidase B (MAO-B) are increased. While BChE is a viable therapeutic target for alleviation of symptoms caused by cholinergic hypofunction, MAO-B is a potential therapeutic target for prevention of neurodegeneration in Alzheimer's disease. Starting with piperidine-based selective human (h)BChE inhibitors and propargylamine-based MAO inhibitors, we have designed, synthesized and biochemically evaluated a series of N-propargylpiperidines. All of these compounds inhibited hBChE with good selectivity over the related enzyme, acetylcholinesterase, and crossed the blood-brain barrier in a parallel artificial membrane permeation assay. The crystal structure of one of the inhibitors (compound 3) in complex with hBChE revealed its binding mode. Three compounds (4, 5, 6) showed concomitant inhibition of MAO-B. Additionally, the most potent hBChE inhibitor 7 and dual BChE and MAO-B inhibitor 6 were non-cytotoxic and protected neuronal SH-SY5Y cells from toxic amyloid ß-peptide species.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Naftalenos/farmacología , Piperidinas/farmacología , Sulfonamidas/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Butirilcolinesterasa/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Naftalenos/síntesis química , Naftalenos/química , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
15.
Proc Natl Acad Sci U S A ; 111(35): 12769-74, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136092

RESUMEN

It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼ 5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Endotoxinas/química , Proteínas Hemolisinas/química , Esporas Bacterianas/química , Bacillus thuringiensis/ultraestructura , Toxinas de Bacillus thuringiensis , Cristalización , Cristalografía por Rayos X/instrumentación , Rayos Láser , Esporas Bacterianas/ultraestructura , Sincrotrones , Difracción de Rayos X
16.
PLoS Comput Biol ; 11(5): e1004255, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25955156

RESUMEN

Bacterial porins are water-filled ß-barrel channels that allow translocation of solutes across the outer membrane. They feature a constriction zone, contributed by the plunging of extracellular loop 3 (L3) into the channel lumen. Porins are generally in the open state, but undergo gating in response to external voltages. To date the underlying mechanism is unclear. Here we report results from molecular dynamics simulations on the two porins of Providenica stuartii, Omp-Pst1 and Omp-Pst2, which display distinct voltage sensitivities. Voltage gating was observed in Omp-Pst2, where the binding of cations in-between L3 and the barrel wall results in exposing a conserved aromatic residue in the channel lumen, thereby halting ion permeation. Comparison of Omp-Pst1 and Omp-Pst2 structures and trajectories suggests that their sensitivity to voltage is encoded in the hydrogen-bonding network anchoring L3 onto the barrel wall, as we observed that it is the strength of this network that governs the probability of cations binding behind L3. That Omp-Pst2 gating is observed only when ions flow against the electrostatic potential gradient of the channel furthermore suggests a possible role for this porin in the regulation of charge distribution across the outer membrane and bacterial homeostasis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Porinas/química , Porinas/metabolismo , Providencia/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Biología Computacional , Simulación por Computador , Enlace de Hidrógeno , Activación del Canal Iónico , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Electricidad Estática
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1184-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25945583

RESUMEN

High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Muramidasa/química , Nanotecnología , Sincrotrones/instrumentación , Animales , Pollos , Modelos Moleculares , Programas Informáticos
18.
Bioorg Med Chem ; 23(15): 4442-4452, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116179

RESUMEN

Tremendous efforts have been dedicated to the development of effective therapeutics against Alzheimer's disease, which represents the most common debilitating neurodegenerative disease. Multifunctional agents are molecules designed to have simultaneous effects on different pathological processes. Such compounds represent an emerging strategy for the development of effective treatments against Alzheimer's disease. Here, we report on the synthesis and biological evaluation of a series of nitroxoline-based analogs that were designed by merging the scaffold of 8-hydroxyquinoline with that of a known selective butyrylcholinesterase inhibitor that has promising anti-Alzheimer properties. Most strikingly, compound 8g inhibits self-induced aggregation of the amyloid beta peptide (Aß1-42), inhibits with sub-micromolar potency butyrylcholinesterase (IC50=215 nM), and also selectively complexes Cu(2+). Our study thus designates this compound as a promising multifunctional agent for therapeutic treatment of Alzheimer's disease. The crystal structure of human butyrylcholinesterase in complex with compound 8g is also solved, which suggests ways to further optimize compounds featuring the 8-hydroxyquinoline scaffold.


Asunto(s)
Inhibidores de la Colinesterasa/química , Nitroquinolinas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Sitios de Unión , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Quelantes/química , Quelantes/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Metales/química , Metales/metabolismo , Simulación del Acoplamiento Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/uso terapéutico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Espectrofotometría Ultravioleta
19.
Soft Matter ; 10(30): 5458-62, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24930741

RESUMEN

Tobacco mosaic virus particles can be rapidly assembled into 3D-domains by capillary flow-driven alignment at the triple contact-line of an evaporating droplet. Virus particles of ∼150 Šdiameter can be resolved within individual domains at the outer rim of the "coffee-ring" type residue by atomic force microscopy. The crystalline domains can also be probed by X-ray microdiffraction techniques. Both techniques reveal that the rod-like virus particles are oriented parallel to the rim. We further demonstrate the feasibility of collection of hk0 reflection intensities in GISAXS geometry and show it allows calculating a low-resolution electron density projection along the rod axis.


Asunto(s)
Virus del Mosaico del Tabaco/química , Virión/química , Cristalización , Microscopía de Fuerza Atómica , Difracción de Rayos X
20.
Proc Natl Acad Sci U S A ; 108(41): 16938-43, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21949245

RESUMEN

Amyloid-beta (Aß) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer's disease. Aß molecules form ß-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of Aß has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate Aß polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of Aß. These structures, all of short, self-complementing pairs of ß-sheets termed steric zippers, reveal a variety of modes of self-association of Aß. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to Aß. These structures and molecular models contribute fundamental information for understanding Aß polymorphic nature and pathogenesis.


Asunto(s)
Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/ultraestructura , Cristalización , Cristalografía por Rayos X , Humanos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/ultraestructura , Multimerización de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA