Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ear Hear ; 44(4): 710-720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36550618

RESUMEN

OBJECTIVES: Different patterns of electrocochleographic responses along the electrode array after insertion of the cochlear implant electrode array have been described. However, the implications of these patterns remain unclear. Therefore, the aim of the study was to correlate different peri- and postoperative electrocochleographic patterns with four-point impedance measurements and preservation of residual hearing. DESIGN: Thirty-nine subjects with residual low-frequency hearing which were implanted with a slim-straight electrode array could prospectively be included. Intracochlear electrocochleographic recordings and four-point impedance measurements along the 22 electrodes of the array (EL, most apical EL22) were conducted immediately after complete insertion and 3 months after surgery. Hearing preservation was assessed after 3 months. RESULTS: In perioperative electrocochleographic recordings, 22 subjects (56%) showed the largest amplitude around the tip of the electrode array (apical-peak, AP, EL20 or EL22), whereas 17 subjects (44%) exhibited a maximum amplitude in more basal regions (mid-peak, MP, EL18 or lower). At 3 months, in six subjects with an AP pattern perioperatively, the location of the largest electrocochleographic response had shifted basally (apical-to-mid-peak, AP-MP). Latency was analyzed along the electrode array when this could be discerned. This was the case in 68 peri- and postoperative recordings (87% of all recordings, n = 78). The latency increased with increasing insertion depth in AP recordings (n = 38, median of EL with maximum latency shift = EL21). In MP recordings (n = 30), the maximum latency shift was detectable more basally (median EL12, p < 0.001). Four-point impedance measurements were available at both time points in 90% (n = 35) of all subjects. At the 3-month time point, recordings revealed lower impedances in the AP group (n = 15, mean = 222 Ω, SD = 63) than in the MP (n = 14, mean = 295 Ω, SD= 7 6) and AP-MP groups (n = 6, mean = 234 Ω, SD = 129; AP versus MP p = 0.026, AP versus AP-MP p = 0.023, MP versus AP-MP p > 0.999). The amplitudes of perioperative AP recordings showed a correlation with preoperative hearing thresholds ( r2 =0.351, p = 0.004). No such correlation was detectable in MP recordings ( r2 = 0.033, p = 0.484). Audiograms were available at both time points in 97% (n = 38) of all subjects. The mean postoperative hearing loss in the AP group was 13 dB (n = 16, SD = 9). A significantly larger hearing loss was detectable in the MP and AP-MP groups with 28 (n = 17, SD = 10) and 35 dB (n = 6, SD = 13), respectively (AP versus MP p = 0.002, AP versus AP-MP p = 0.002, MP versus AP-MP p = 0.926). CONCLUSION: MP and AP-MP response patterns of the electrocochleographic responses along the electrode array after cochlear implantation are correlated with higher four-point impedances and poorer postoperative hearing compared to AP response patterns. The higher impedances suggest that MP and AP-MP patterns are associated with increased intracochlear fibrosis.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva , Humanos , Impedancia Eléctrica , Pérdida Auditiva/cirugía , Cóclea/cirugía , Sordera/cirugía
2.
Ear Hear ; 41(6): 1560-1567, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33136631

RESUMEN

OBJECTIVES: Real-time electrocochleography (ECochG) has been used as a monitoring tool during cochlear implantation (CI), whereby, amplitude drops have been correlated with postoperative acoustic hearing results. However, no consensus has been reached as to how a single event of an amplitude drop should be characterized. The aim of this study was to identify ECochG events that predict loss of hearing 1 month after surgery. DESIGN: Fifty-five patients were included in this prospective cohort study. Real-time ECochG measurements were performed during CI electrode insertion. Single ECochG events were characterized according to their amplitude loss and slope steepness. RESULTS: Using receiver operating characteristic analyses, the most efficient cut-off criterion for a relative hearing loss of 25% was an amplitude loss of 61% at a fixed slope steepness of 0.2 µV/sec. Three-quarters of our population had at least one such event during implantation. Most events occurred shortly before full insertion. With increasing number of events, median residual hearing thresholds deteriorated for all frequencies. Larger amplitude drops trended toward worse hearing preservation. Signal recovery after an ECochG event could not be correlated to acoustic hearing outcomes. CONCLUSIONS: Our data suggest that amplitude drops exceeding 61% of the ongoing signal at a slope steepness of 0.2 µV/sec are correlated with worse acoustic hearing preservation. Clearly defined ECochG events have the potential to guide surgeons during CI in the future. This is essential if a fully automated data analysis is to be employed or benchmarking undertaken.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audiometría de Respuesta Evocada , Cóclea/cirugía , Humanos , Estudios Prospectivos
3.
Langmuir ; 33(25): 6427-6438, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28585832

RESUMEN

Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.


Asunto(s)
Nanocompuestos , Proteínas Bacterianas , Bacterioclorofilas , Transferencia de Energía , Orgánulos , Polímeros
4.
Photosynth Res ; 127(1): 117-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26216497

RESUMEN

The photosynthetic membranes of the filamentous anoxygenic phototroph Roseiflexus castenholzii have been studied with electron microscopy, atomic force microscopy, and biochemistry. Electron microscopy of the light-harvesting reaction center complex produced a 3D model that aligns with the solved crystal structure of the RC-LH1 from Thermochromatium tepidum with the H subunit removed. Atomic force microscopy of the whole membranes yielded a picture of the supramolecular organization of the major proteins in the photosynthetic electron transport chain. The results point to a loosely packed membrane without accessory antenna proteins or higher order structure.


Asunto(s)
Membrana Celular/química , Chloroflexi/química , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/química , Chloroflexi/metabolismo , Chromatiaceae/química , Hemo/análisis , Imagenología Tridimensional , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/métodos , Fotosíntesis
5.
Nano Lett ; 15(4): 2422-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25719733

RESUMEN

We report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. This study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

6.
Plant J ; 76(6): 1074-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118159

RESUMEN

Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.


Asunto(s)
Capsicum/ultraestructura , Carotenoides/metabolismo , Frutas/ultraestructura , Plastidios/ultraestructura , Capsicum/metabolismo , Carotenoides/análisis , Frutas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Análisis Multivariante , Fenotipo , Plastidios/metabolismo , Especificidad de la Especie
7.
Photosynth Res ; 121(2-3): 311-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24844569

RESUMEN

Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.


Asunto(s)
Carbono/metabolismo , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis
8.
Biotechnol Bioeng ; 111(9): 1748-57, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24931928

RESUMEN

Biofuels derived from the mass cultivation of algae represent an emerging industry that aims to partially displace petroleum based fuels. Outdoor, open-pond, and raceway production facilities are attractive options for the mass culture of algae however, this mode of cultivation leaves the algae susceptible to epidemics from a variety of environmental challenges. Infestations can result in complete collapse of the algal populations and destruction of their valuable products making it paramount to understand the host-pathogen relationships of known algal pests in order to develop mitigation strategies. In the present work, we characterize the spatial-temporal response of photosynthetic pigments in Scenedesmus dimorphus to infection from Amoeboaphelidium protococcarum, a destructive endoparasite, with the goal of understanding the potential for early detection of infection via host pigment changes. We employed a hyperspectral confocal fluorescence microscope to quantify these changes in pigmentation with high spatial and spectral resolution during early parasite infection. Carotenoid abundance and autofluorescence increased within the first 24 h of infection while chlorophyll emission remained constant. Changes in host cell photosynthesis and bulk chlorophyll content were found to lag behind parasite replication. The results herein raise the possibility of using host-cell pigment changes as indicators of nascent parasite infection.


Asunto(s)
Parásitos/crecimiento & desarrollo , Pigmentos Biológicos/análisis , Scenedesmus/parasitología , Animales , Clorofila/análisis , Microscopía Confocal/métodos , Fotosíntesis
9.
Appl Opt ; 53(24): F31-45, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25321139

RESUMEN

We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.


Asunto(s)
Acuicultura/métodos , Chlorophyta/clasificación , Colorimetría/métodos , Cianobacterias/aislamiento & purificación , Monitoreo del Ambiente/métodos , Fotometría/métodos , Análisis Espectral/métodos , Algoritmos
10.
Otol Neurotol ; 45(4): e315-e321, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478410

RESUMEN

INTRODUCTION: Preservation of residual hearing after cochlear implantation allows for electroacoustic stimulation, which leads to better music appreciation, noise localization, and speech comprehension in noisy environments. Real-time intraoperative electrocochleography (rt-ECochG) monitoring has shown promise in improving residual hearing rates. Four-point impedance (4PI) is being explored as a potential biomarker in cochlear implantation that has been associated with fibrotic tissue response, hearing loss, and dizziness. In this study, we explore whether monitoring both rt-ECochG intraoperatively and postoperative 4PI improves predictions of the preservation of residual hearing. METHODS: This was a prospective cohort study. Adults with residual acoustic hearing underwent cochlear implantation with intraoperative intracochlear electrocochleography (ECochG) monitoring. The surgeon responded to a drop in ECochG signal amplitude of greater than 30% by a standardized manipulation of the electrode with the aim of restoring the ECochG. At the end of the procedure, the ECochG signal was categorized as being maintained or having dropped more than 30%. 4PI was measured on 1 day, 1 week, and 1 and 3 months after cochlear implantation. Residual hearing was measured by routine pure-tone audiogram at 3 months postoperatively. The ECochG category and 4PI impedance values were entered as factors in a multiple linear regression predicting the protection of residual hearing. RESULTS: Twenty-six patients were recruited. Rt-ECochG significantly predicted residual hearing at 3 months (t test; mean difference, 37.7%; p = 0.002). Inclusion of both 1-day or 3-month 4PI in a multiple linear regression with rt-ECochG markedly improved upon correlations with residual hearing compared with the rt-ECochG-only model (rt-ECochG and 1-d 4PI model, R2 = 0.67; rt-ECochG and 3-mo 4PI model, R2 = 0.72; rt-ECochG-only model, R2 = 0.33). CONCLUSIONS: Both rt-ECochG and 4PI predict preservation of residual hearing after cochlear implantation. These findings suggest that the biological response of the cochlea to implantation, as reflected in 4PI, is an important determinant of residual hearing, independent of the acute effects on hearing during implant surgery seen with rt-ECochG. We speculate that 4PI relates to inflammation 1 day after implantation and fibrosis at 3 months.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Humanos , Implantación Coclear/métodos , Estudios Prospectivos , Impedancia Eléctrica , Cóclea/cirugía , Audición , Audiometría de Respuesta Evocada/métodos , Biomarcadores
11.
J Photochem Photobiol B ; 254: 112891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555841

RESUMEN

Chlorosomes of green photosynthetic bacteria are large light-harvesting complexes enabling these organisms to survive at extremely low-light conditions. Bacteriochlorophylls found in chlorosomes self-organize and are ideal candidates for use in biomimetic light-harvesting in artificial photosynthesis and other applications for solar energy utilization. Here we report on the construction and characterization of an artificial antenna consisting of bacteriochlorophyll c co-aggregated with ß-carotene, which is used to extend the light-harvesting spectral range, and bacteriochlorophyll a, which acts as a final acceptor for excitation energy. Efficient energy transfer between all three components was observed by means of fluorescence spectroscopy. The efficiency varies with the ß-carotene content, which increases the average distance between the donor and acceptor in both energy transfer steps. The efficiency ranges from 89 to 37% for the transfer from ß-carotene to bacteriochlorophyll c, and from 93 to 69% for the bacteriochlorophyll c to bacteriochlorophyll a step. A significant part of this study was dedicated to a development of methods for determination of energy transfer efficiency. These methods may be applied also for study of chlorosomes and other pigment complexes.


Asunto(s)
Bacterioclorofila A , Bacterioclorofilas , Bacterioclorofilas/química , Bacterioclorofila A/química , beta Caroteno , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Transferencia de Energía , Fotosíntesis
12.
Otol Neurotol ; 45(3): 238-244, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38238914

RESUMEN

BACKGROUND: The shape and position of cochlear implant electrodes could potentially influence speech perception, as this determines the proximity of implant electrodes to the spiral ganglion. However, the literature to date reveals no consistent association between speech perception and either the proximity of electrode to the medial cochlear wall or the depth of insertion. These relationships were explored in a group of implant recipients receiving the same precurved electrode. METHODS: This was a retrospective study of adults who underwent cochlear implantation with Cochlear Ltd.'s Slim Perimodiolar electrode at the Royal Victorian Eye and Ear Hospital between 2015 and 2018 (n = 52). Postoperative images were obtained using cone beam computed tomography (CBCT) and analyzed by multi-planar reconstruction to identify the position of the electrode contacts within the cochlea, including estimates of the proximity of the electrodes to the medial cochlear wall or modiolus and the angular depth of insertion. Consonant-vowel-consonant (CVC) monosyllabic phonemes were determined preoperatively, and at 3 and 12 months postoperatively. Electrically evoked compound action potential (ECAP) thresholds and impedance were measured from the implant array immediately after implantation. The relationships between electrode position and speech perception, electrode impedance, and ECAP threshold were an analyzed by Pearson correlation. RESULTS: Age had a negative impact on speech perception at 3 months but not 12 months. None of the electrode-wide measures of proximity between electrode contacts and the modiolus, nor measures of proximity to the medial cochlear wall, nor the angular depth of insertion of the most apical electrode correlated with speech perception. However, there was a moderate correlation between speech perception and the position of the most basal electrode contacts; poorer speech perception was associated with a greater distance to the modiolus. ECAP thresholds were inversely related to the distance between electrode contacts and the modiolus, but there was no clear association between this distance and impedance. CONCLUSIONS: Speech perception was significantly affected by the proximity of the most basal electrodes to the modiolus, suggesting that positioning of these electrodes may be important for optimizing speech perception. ECAP thresholds might provide an indication of this proximity, allowing for its optimization during surgery.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Humanos , Lactante , Implantación Coclear/métodos , Estudios Retrospectivos , Cóclea/diagnóstico por imagen , Cóclea/cirugía , Potenciales Evocados
13.
Laryngoscope ; 134(3): 1410-1416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37694764

RESUMEN

INTRODUCTION: Intraoperative trauma leading to bleeding during cochlear implantation negatively impacts residual hearing of cochlear implant recipients. There are no clinical protocols for the removal of blood during implantation, to reduce the consequential effects such as inflammation and fibrosis which adversely affect cochlear health and residual hearing. This preclinical study investigated the implementation of an intra-cochlear flushing protocol for the removal of blood. METHODS: Three groups of guinea pigs were studied for 28 days after cochlear implantation; cochlear implant-only (control group); cochlear implant with blood injected into the cochlea (blood group); and cochlear implant, blood injection, and flushing of the blood from the cochlea intraoperatively (flush group). Auditory brainstem responses (ABRs) in addition to tissue response volumes were analyzed and compared between groups. RESULTS: After implantation, the blood group exhibited the highest ABR thresholds when compared to the control and flush group, particularly in the high frequencies. On the final day, the control and blood group had similar ABR thresholds across all frequencies tested, whereas the flush group had the lowest thresholds, significantly lower at 24 kHz than the blood and control group. Analysis of the tissue response showed the flush group had significantly lower tissue responses in the basal half of the array when compared with the blood and control group. CONCLUSIONS: Flushing intra-cochlear blood during surgery resulted in better auditory function and reduced subsequent fibrosis in the basal region of the cochlea. This finding prompts the implementation of a flushing protocol in clinical cochlear implantation. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1410-1416, 2024.


Asunto(s)
Antígenos de Grupos Sanguíneos , Implantación Coclear , Implantes Cocleares , Animales , Cobayas , Implantación Coclear/métodos , Cóclea/patología , Fibrosis , Potenciales Evocados Auditivos del Tronco Encefálico , Umbral Auditivo
14.
J Bacteriol ; 195(8): 1727-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396908

RESUMEN

Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.


Asunto(s)
Carotenoides/química , Chloroflexus/metabolismo , Luz , Ficobiliproteínas/química , Ficobiliproteínas/fisiología , Cromatóforos Bacterianos , Carotenoides/metabolismo , Chloroflexus/citología , Estructura Molecular , Orgánulos/fisiología , Pigmentos Biológicos , Difracción de Rayos X
15.
Plant Physiol ; 158(4): 1600-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22331410

RESUMEN

Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.


Asunto(s)
Mutación/genética , Fotosíntesis , Ficobilisomas/metabolismo , Synechocystis/metabolismo , Synechocystis/ultraestructura , Tilacoides/ultraestructura , Análisis Multivariante , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Ficocianina/metabolismo , Análisis Espectral , Synechocystis/enzimología
16.
Photosynth Res ; 118(1-2): 17-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24132812

RESUMEN

Photosynthetic organisms rely on antenna systems to harvest and deliver energy from light to reaction centers. In fluctuating photic environments, regulation of light harvesting is critical for a photosynthetic organism's survival. Here, we describe the use of a suite of phycobilisome mutants to probe the consequences of antenna truncation in the cyanobacterium Synechocystis sp. PCC 6803. Studies using transmission electron microscopy (TEM), hyperspectral confocal fluorescence microscopy (HCFM), small-angle neutron scattering (SANS), and an optimized photobioreactor system have unraveled the adaptive strategies that cells employ to compensate for antenna reduction. As the phycobilisome antenna size decreased, changes in thylakoid morphology were more severe and physical segregation of the two photosystems increased. Repeating distances between thylakoid membranes measured by SANS were correlated with TEM data, and corresponded to the degree of phycobilisome truncation. Thylakoid membranes were found to have a high degree of structural flexibility, and changes in the membrane system upon illumination were rapid and reversible. Phycobilisome truncation in Synechocystis 6803 reduced the growth rate and lowered biomass accumulation. Together, these results lend a dynamic perspective to the intracellular membrane organization in cyanobacteria cells and suggest an adaptive mechanism that allows cells to adjust to altered light absorption capabilities, while highlighting the cell-wide implications of antenna truncation.


Asunto(s)
Ficobilisomas/fisiología , Synechocystis/fisiología , Tilacoides/fisiología , Fotosíntesis , Synechocystis/ultraestructura , Tilacoides/ultraestructura
17.
Artículo en Inglés | MEDLINE | ID: mdl-38083677

RESUMEN

Biosensing technologies are emerging as an important consideration when designing implantable medical devices. For cochlear implants, biosensors may help preserve the natural hearing a patient has prior to implantation by detecting blood in the cochlea during insertion. If blood enters the cochlea, it creates a hostile environment leading to further hearing loss and reduced device function. Here we present four-point impedance, measured directly from a commercial cochlear implant, as a biosensor for real-time detection of blood in the cochlea. The four-point impedance of different concentrations of whole blood in saline were measured using the impedance-measuring capabilities of a cochlear implant with a square-wave stimulation. Impedance derived from a cochlear implant succeeded in differentiating concentrations of blood in saline with results from a sensitivity analysis showing the lowest concentration the system could detect was between 12 % to 21 % of whole blood. In a subsequent in-vitro study, continuous four-point impedance was measured from a cochlear implant while it was inserted into a 3D printed cochlear model, followed by an injection of blood to emulate surgical events. These results demonstrated four-point impedance from a cochlear implant can instantaneously detect the addition of blood within the cochlea and localize it along the electrode array. The adaptation of a biosensing tool using a cochlear implant provides more information that can be relayed to the surgeon intraoperatively to potentially enhance hearing outcomes with the implant.Clinical Relevance - Using the cochlear implant itself to detect intra-cochlear bleeding may open therapeutic avenues to prevent further hearing loss.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva , Humanos , Implantación Coclear/métodos , Impedancia Eléctrica , Cóclea/cirugía , Pérdida Auditiva/cirugía , Sordera/cirugía
18.
Otol Neurotol ; 44(7): 688-695, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37400267

RESUMEN

INTRODUCTION: Postimplantation dizziness is common, affecting approximately 50% of patients. Theories for dizziness include utricular inflammation, endolymphatic hydrops, and loss of perilymph. Four-point impedance (4PI) is a novel impedance measurement in cochlear implantation that shows potential to predict hearing loss, inflammation, and fibrotic tissue response. Here, we associate 4PI with dizziness after implantation and explore the link with utricular function. METHODS: Subjective visual vertical (SVV) as a measure of utricular function was recorded preoperatively as a baseline. 4PI was measured immediately postinsertion. Ongoing follow-up was performed at 1 day, 1 week, and 1 month, postoperatively. At each follow-up, 4PI, SVV, and the patients' subjective experience of dizziness were assessed. DISCUSSION: Thirty-eight adults were recruited. One-day 4PI was significantly higher in patients dizzy within the next week (254 Ω vs 171 Ω, p = 0.015). The optimum threshold on receiver operating characteristic curve was 190 Ω, above which patients had 10 times greater odds of developing dizziness (Fisher exact test, OR = 9.95, p = 0.0092). This suggests that 4PI varies with changes in the intracochlear environment resulting in dizziness, such as inflammation or hydrops. SVV significantly deviated away from the operated ear at 1 day (fixed effect estimate = 2.6°, p ≤ 0.0001) and 1 week (fixed effect estimate 2.7°, p ≤ 0.001). CONCLUSION: One-day 4PI is a potentially useful marker for detecting postoperative dizziness after cochlear implantation. Of the current theories for postoperative dizziness, inflammation might explain the findings seen here, as would changes in hydrostatic pressure. Future research should focus on detecting and exploring these labyrinthine changes in further detail.


Asunto(s)
Implantación Coclear , Hidropesía Endolinfática , Adulto , Humanos , Mareo/etiología , Mareo/diagnóstico , Implantación Coclear/efectos adversos , Impedancia Eléctrica , Vértigo/diagnóstico , Hidropesía Endolinfática/diagnóstico
19.
J Int Adv Otol ; 19(1): 16-21, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36718031

RESUMEN

BACKGROUND: Surgical rehearsal - patient-specific preoperative surgical practice - can be provided by virtual reality simulation. This study investigated the effect of surgical rehearsal on cortical mastoidectomy performance and procedure duration. METHODS: University students (n=40) were randomized evenly into a rehearsal and control group. After watching a video tutorial on cortical mastoidectomy, participants completed the procedure on a virtual reality simulator as a pre-test. Participants completed a further 8 cortical mastoidectomies on the virtual reality simulator as training before drilling two 3-dimensional (3D) printed temporal bones. The rehearsal group received 3D printed bones they had previously operated on in virtual reality, while the control group received 2 new bones. Cortical mastoidectomy was assessed by 3 blinded graders using the Melbourne Mastoidectomy Scale. RESULTS: There was high interrater reliability between the 3 graders (intraclass correlation coefficient, r=0.8533, P < .0001). There was no difference in the mean surgical performance on the two 3D printed bones between the control and rehearsal groups (P=.2791). There was no significant difference in the mean procedure duration between the control and rehearsal groups for both 3D printed bones (P=.8709). However, there was a significant decrease in procedure duration between the first and second 3D printed bones (P < .0001). CONCLUSION: In this study, patient-specific virtual reality rehearsal provided no additional advantage to cortical mastoidectomy performance by novice operators compared to generic practice on a virtual reality simulator. Further, virtual reality training did not improve cortical mastoidectomy performance on 3D printed bones, highlighting the impact of anatomical diversity and changing operating modalities on the acquisition of new surgical skills.


Asunto(s)
Otolaringología , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Hueso Temporal/cirugía , Curriculum
20.
Biochim Biophys Acta ; 1807(3): 262-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21126505

RESUMEN

The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.


Asunto(s)
Chloroflexus/metabolismo , Transporte de Electrón , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Chloroflexus/química , Citocromos/metabolismo , Hemo , Cinética , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA