Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38378148

RESUMEN

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Asunto(s)
Hydra , Animales , Hydra/fisiología , Boca/fisiología , Epitelio , Fenómenos Biomecánicos , Neuronas
2.
Dev Biol ; 488: 74-80, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577031

RESUMEN

We present a new transgenic Hydra vulgaris line expressing a distinct fluorescent protein in each of the three cell lineages of the adult polyp. Plasmid microinjection was used to generate a novel transgenic Hydra line expressing the yellow fluorescent protein YPet in the ectodermal epithelial cell lineage. Tissue grafting was then used to combine a YPet animal with a line that expresses DsRed2 in the endodermal epithelial lineage and eGFP in the interstitial cell (i-cell) lineage. The resulting triple-labeled ("tricolored") transgenic line provides, for the first time, a Hydra in which all three cell lineages can be imaged simultaneously in vivo. We show example confocal images of whole animals and individual cells to illustrate the imaging capabilities that this new line makes possible. We also used this line to carry out new studies of cell fate in the tentacles. Specifically, we evaluated the well-accepted notion that all tentacle cells are terminally differentiated and are displaced or migrate exclusively towards the distal end of the tentacle. We found that ectodermal and endodermal epithelial cells are displaced distally, as expected. In contrast, members of the i-cell lineage, which resembled neuronal precursors, could migrate out of a tentacle into the body column. This example illustrates how this tricolored transgenic line enables new in vivo studies of cell behaviors in Hydra.


Asunto(s)
Hydra , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Linaje de la Célula , Ectodermo/fisiología , Células Epiteliales , Hydra/fisiología
3.
J Exp Biol ; 225(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924486

RESUMEN

Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head.


Asunto(s)
Planarias , Animales , Evolución Biológica , Planarias/fisiología
4.
Arch Toxicol ; 96(12): 3233-3243, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173421

RESUMEN

Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.


Asunto(s)
Cloropirifos , Insecticidas , Síndromes de Neurotoxicidad , Plaguicidas , Planarias , Humanos , Animales , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Diazinón/toxicidad , Cloropirifos/toxicidad , Butirilcolinesterasa , Acetilcolinesterasa , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Arildialquilfosfatasa , Tacrina , Hidrolasas de Éster Carboxílico , Sistema Enzimático del Citocromo P-450/metabolismo , Agua Dulce , Inhibidores de la Colinesterasa/toxicidad
5.
Dev Biol ; 462(1): 60-65, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165148

RESUMEN

Control of patterning and the specification of body axes are fundamental aspects of animal development involving complex interactions between chemical, physical, and genetic signals. The freshwater polyp Hydra has long been recognized as a useful model system to address these questions due to its simple anatomy, optical transparency, and strong regenerative abilities, which enabled clever grafting experiments to alter and probe patterning. Reliable methods exist for the transplantation of small tissue pieces into the body column or the combination of sections cut perpendicular to the body axis, which can be used to examine oral-aboral gradients and axis induction potential of tissue fragments. However, existing methods do not allow researchers to probe questions of axis alignment and lateral information exchange. We therefore developed a technique to produce chimeric animals split longitudinally along the body axis of the animal by anesthetizing the animals with the terpene linalool and threading the donor pieces onto pairs of fine glass needles. Our novel approach can be applied to study questions in Hydra research that have thus far been inaccessible, including patterning processes acting perpendicular to the oral-aboral axis and the extent of lateral cell migration.


Asunto(s)
Tipificación del Cuerpo/genética , Regeneración/genética , Trasplante de Tejidos/métodos , Monoterpenos Acíclicos/farmacología , Animales , Quimera/genética , Hydra/genética , Hydra/metabolismo , Trasplantes/fisiología
6.
Dev Biol ; 467(1-2): 88-94, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871156

RESUMEN

How an animal establishes its body axis is a fundamental question in developmental biology. The freshwater cnidarian Hydra is an attractive model for studying axis formation because it is radially symmetric, with a single oral-aboral axis. It was recently proposed that the orientation of the new body axis in a regenerating Hydra polyp is determined by the oral-aboral orientation of the actin-myosin contractile processes (myonemes) in the animal's outer epithelial layer. However, it remained unclear how the oral-aboral polarity of the body axis would be defined. As Wnt signaling is known to control axis polarity in Hydra and bilaterians, we hypothesized that it plays a role in axis formation during regeneration of Hydra tissue pieces. We tested this hypothesis using pharmacological perturbations and novel grafting experiments to set Wnt signaling and myoneme orientation perpendicular to each other to determine which controls axis formation. Our results demonstrate that Wnt signaling is the dominant encoder of axis orientation and polarity, in line with its conserved role in axial patterning.


Asunto(s)
Hydra/fisiología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , Animales
7.
Phys Biol ; 19(1)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34638110

RESUMEN

Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.


Asunto(s)
Planarias , Animales , Reproducción Asexuada
8.
Proc Natl Acad Sci U S A ; 114(41): 10888-10893, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973880

RESUMEN

Asexual freshwater planarians reproduce by tearing themselves into two pieces by a process called binary fission. The resulting head and tail pieces regenerate within about a week, forming two new worms. Understanding this process of ripping oneself into two parts poses a challenging biomechanical problem. Because planarians stop "doing it" at the slightest disturbance, this remained a centuries-old puzzle. We focus on Dugesia japonica fission and show that it proceeds in three stages: a local constriction ("waist formation"), pulsation-which increases waist longitudinal stresses-and transverse rupture. We developed a linear mechanical model with a planarian represented by a thin shell. The model fully captures the pulsation dynamics leading to rupture and reproduces empirical time scales and stresses. It asserts that fission execution is a mechanical process. Furthermore, we show that the location of waist formation, and thus fission, is determined by physical constraints. Together, our results demonstrate that where and how a planarian rips itself apart during asexual reproduction can be fully explained through biomechanics.


Asunto(s)
Planarias/fisiología , Regeneración/fisiología , Reproducción Asexuada/fisiología , Animales , Agua Dulce , Planarias/crecimiento & desarrollo
9.
Biophys J ; 117(6): 1145-1155, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31443907

RESUMEN

Hydra is a small freshwater polyp capable of regeneration from small tissue pieces and from aggregates of cells. During regeneration, a hollow bilayered sphere is formed that undergoes osmotically driven shape oscillations of inflation and rupture. These oscillations are necessary for successful regeneration. Eventually, the oscillating sphere breaks rotational symmetry along the future head-foot axis of the animal. Notably, the shape oscillations show an abrupt shift from large-amplitude, long-period oscillations to small-amplitude, short-period oscillations. It has been widely accepted that this shift in oscillation pattern is linked to symmetry breaking and axis formation, and current theoretical models of Hydra symmetry breaking use this assumption as a model constraint. However, a mechanistic explanation for the shift in oscillation pattern is lacking. Using in vivo manipulation and imaging, we quantified the shape oscillation dynamics and dissected the timing and triggers of the pattern shift. Our experiments demonstrate that the shift in the shape oscillation pattern in regenerating Hydra tissue pieces is caused by the formation of a functional mouth and not by shape symmetry breaking as previously assumed. Thus, model assumptions must be revised in light of these new experimental data, which can be used to constrain and validate improved theoretical models of pattern formation in Hydra.


Asunto(s)
Fenómenos Biofísicos , Hydra/fisiología , Boca/fisiología , Regeneración/fisiología , Animales , Modelos Biológicos
10.
Dev Biol ; 433(2): 155-165, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29179947

RESUMEN

Mechanical forces are an important contributor to cell fate specification and cell migration during embryonic development in animals. Similarities between embryogenesis and regeneration, particularly with regards to pattern formation and large-scale tissue movements, suggest similarly important roles for physical forces during regeneration. While the influence of the mechanical environment on stem cell differentiation in vitro is being actively exploited in the fields of tissue engineering and regenerative medicine, comparatively little is known about the role of stresses and strains acting during animal regeneration. In this review, we summarize published work on the role of physical principles and mechanical forces in animal regeneration. Novel experimental techniques aimed at addressing the role of mechanics in embryogenesis have greatly enhanced our understanding at scales from the subcellular to the macroscopic - we believe the time is ripe for the field of regeneration to similarly leverage the tools of the mechanobiological research community.


Asunto(s)
Fenómenos Mecánicos , Modelos Animales , Regeneración/fisiología , Anfibios/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Adhesión Celular , División Celular , Movimiento Celular , Proteínas Contráctiles/fisiología , Difusión , Desarrollo Embrionario , Hydra/fisiología , Modelos Biológicos , Especificidad de la Especie , Tensión Superficial , Sustancias Viscoelásticas
11.
Arch Toxicol ; 92(3): 1161-1176, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29167930

RESUMEN

The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.


Asunto(s)
Colinesterasas/genética , Colinesterasas/metabolismo , Respuesta al Choque Térmico/fisiología , Planarias/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Colinesterasas/química , Diazinón/farmacología , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Respuesta al Choque Térmico/efectos de los fármacos , Sistema Nervioso/enzimología , Fisostigmina/farmacología , Planarias/efectos de los fármacos , Conformación Proteica
12.
Biophys J ; 113(12): 2827-2841, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262375

RESUMEN

Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation.


Asunto(s)
Fenómenos Biofísicos , Hydra/citología , Animales , Adhesión Celular , Agregación Celular , Modelos Biológicos , Análisis de la Célula Individual
13.
Phys Biol ; 14(3): 036003, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28467318

RESUMEN

Uncovering the mechanisms that control size, growth, and division rates of organisms reproducing through binary division means understanding basic principles of their life cycle. Recent work has focused on how division rates are regulated in bacteria and yeast, but this question has not yet been addressed in more complex, multicellular organisms. We have, over the course of several years, assembled a unique large-scale data set on the growth and asexual reproduction of two freshwater planarian species, Dugesia japonica and Girardia tigrina, which reproduce by transverse fission and succeeding regeneration of head and tail pieces into new planarians. We show that generation-dependent memory effects in planarian reproduction need to be taken into account to accurately capture the experimental data. To achieve this, we developed a new additive model that mixes multiple size control strategies based on planarian size, growth, and time between divisions. Our model quantifies the proportions of each strategy in the mixed dynamics, revealing the ability of the two planarian species to utilize different strategies in a coordinated manner for size control. Additionally, we found that head and tail offspring of both species employ different mechanisms to monitor and trigger their reproduction cycles. Thus, we find a diversity of strategies not only between species but between heads and tails within species. Our additive model provides two advantages over existing 2D models that fit a multivariable splitting rate function to the data for size control: firstly, it can be fit to relatively small data sets and can thus be applied to systems where available data is limited. Secondly, it enables new biological insights because it explicitly shows the contributions of different size control strategies for each offspring type.


Asunto(s)
Tamaño Corporal , Planarias/fisiología , Regeneración , Reproducción Asexuada , Animales , Modelos Biológicos
16.
Arch Toxicol ; 91(8): 2837-2847, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27990564

RESUMEN

The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Colinesterasas/metabolismo , Compuestos Organofosforados/toxicidad , Plaguicidas/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Humanos , Técnicas In Vitro , Modelos Animales , Planarias , Especificidad de la Especie
17.
Biophys J ; 110(5): 1191-201, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26958895

RESUMEN

Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo.


Asunto(s)
Hydra/fisiología , Boca/fisiología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Ectodermo/anatomía & histología , Ectodermo/efectos de los fármacos , Endodermo/anatomía & histología , Endodermo/efectos de los fármacos , Hydra/anatomía & histología , Cloruro de Magnesio/farmacología , Boca/anatomía & histología , Músculos/efectos de los fármacos , Músculos/fisiología
18.
Phys Biol ; 13(5): 055001, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609598

RESUMEN

When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic 'drunken' phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms' amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.


Asunto(s)
Etanol/farmacología , Proteínas del Helminto/metabolismo , Locomoción/efectos de los fármacos , Planarias/efectos de los fármacos , Planarias/genética , Animales , Relación Dosis-Respuesta a Droga , Proteínas del Helminto/genética , Interferencia de ARN , ARN de Helminto/genética , ARN de Helminto/metabolismo , Especificidad de la Especie
19.
Phys Biol ; 12(5): 056010, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26356147

RESUMEN

The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.


Asunto(s)
Reacción de Fuga , Planarias/fisiología , Animales , Fenómenos Biomecánicos , Marcha , Regeneración
20.
Neurotoxicology ; 102: 48-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552718

RESUMEN

Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.


Asunto(s)
Encéfalo , Caenorhabditis elegans , Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Síndromes de Neurotoxicidad/etiología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Pruebas de Toxicidad/métodos , Caenorhabditis elegans/efectos de los fármacos , Humanos , Pez Cebra , Planarias/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Alternativas a las Pruebas en Animales/métodos , Medición de Riesgo , Ensayos Analíticos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA