Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 57(17): 10656-10666, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30102028

RESUMEN

The synthesis, structural characterization, topological analysis, proton conductivity, and catalytic properties are reported of two Cu(II)-based compounds, namely a dinuclear Cu(II) complex [Cu2(µ-VPA)2(phen)2(H2O)2]·8H2O (1) (H2VPA = vinylphosphonic acid, phen = 1,10-phenanthroline) and a 1D coordination polymer [Cu(µ-SO4)(phen)(H2O)2]∞ (2). Their structural features and H-bonding interactions were investigated in detail, showing that the metal-organic structures of 1 and 2 are extended by multiple hydrogen bonds to more complex 2D or 1D H-bonded architectures with the kgd [Shubnikov plane net (3.6.3.6)/dual] and SP 1-periodic net (4,4)(0,2) topology, respectively. These nets are primarily driven by the H-bonding interactions involving water ligands and H2O molecules of crystallization; besides, the (H2O)4/(H2O)5 clusters were identified in 1. Both 1 and 2 are moderate proton conductors, with proton conductivity values, σ = 3.65 × 10-6 and 3.94 × 10-6 S·cm-1, respectively (measured at 80 °C and 95% relative humidity). Compounds 1 and 2 are also efficient homogeneous catalysts for the mild oxidative functionalization of C5-C8 cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane), namely for the oxidation by H2O2 to give cyclic alcohols and ketones and the hydrocarboxylation by CO/H2O and S2O82- to the corresponding cycloalkanecarboxylic acids as major products. The catalytic reactions proceed under mild conditions (50-60 °C) in aqueous acetonitrile medium, resulting in up to 34% product yields based on cycloalkane substrate.

2.
J Am Chem Soc ; 136(15): 5731-9, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24641594

RESUMEN

We report the synthesis, structural characterization, and functionality (framework interconversions together with proton conductivity) of an open-framework hybrid that combines Ca(2+) ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]·5H2O (Ca-PiPhtA-I) is obtained by slow crystallization at ambient conditions from acidic (pH ≈ 3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data, which revealed the molecular formula Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]. All connectivity modes of the "parent" Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca-PiPhtA-I is 5.7 × 10(-4) S·cm(-1). It increases to 1.3 × 10(-3) S·cm(-1) upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the highest proton conductivity, 6.6 × 10(-3) S·cm(-1), measured at 98% RH and T = 24 °C. Activation energies (Ea) for proton transfer in the above-mentioned frameworks range between 0.23 and 0.4 eV, typical of a Grothuss mechanism of proton conduction. These results underline the importance of internal H-bonding networks that, in turn, determine conductivity properties of hybrid materials. It is highlighted that new proton transfer pathways may be created by means of cavity "derivatization" with selected guest molecules resulting in improved proton conductivity.


Asunto(s)
Fosfatos de Calcio/química , Cristalización , Cristalografía por Rayos X , Protones , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
3.
Inorg Chem ; 52(15): 8770-83, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23883426

RESUMEN

Two new families of divalent metal hybrid derivatives from the aromatic tetraphosphonic acids 1,4- and 1,3-bis(aminomethyl)benzene-N,N'-bis(methylenephosphonic acid), (H2O3PCH2)2-N-CH2C6H4CH2-N(CH2PO3H2)2 (designated herein as p-H8L and m-H8L) have been synthesized by crystallization at room temperature and hydrothermal conditions. The crystal structures of M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2(H2O)2]·2H2O (M = Mg, Co, and Zn), M-(p-H6L), and M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]·nH2O (M = Ca, Mg, Co, and Zn and n = 1-1.5), M-(m-H6L), were solved ab initio by synchrotron powder diffraction data using the direct methods and subsequently refined using the Rietveld method. The crystal structure of the isostructural M-(p-H6L) is constituted by organic-inorganic monodimensional chains where the phosphonate moiety acts as a bidentate chelating ligand bridging two metal octahedra. M-(m-H6L) compounds exhibit a 3D pillared open-framework with small 1D channels filled with water molecules. These channels are formed by the pillaring action of the organic ligand connecting adjacent layers through the phosphonate oxygens. Thermogravimetric and X-ray thermodiffraction analyses of M-(p-H6L) showed that the integrity of their crystalline structures is maintained up to 470 K, without significant reduction of water content, while thermal decomposition takes place above 580 K. The utility of M-(p-H6L) (M = Mg and Zn) hybrid materials in corrosion protection was investigated in acidic aqueous solutions. In addition, the impedance data indicate both families of compounds display similar proton conductivities (σ ∼ 9.4 × 10(-5) S·cm(-1), at 98% RH and 297 K), although different proton transfer mechanisms are involved.

4.
Inorg Chem ; 51(14): 7889-96, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22746972

RESUMEN

In this paper we report the synthesis and structural characterization of the 2D layered coordination polymer Mg(BPMGLY)(H(2)O)(2) (BPMGLY = bis-phosphonomethylglycine, (HO(3)PCH(2))(2)N(H)COO(2-)). The Mg ion is found in a slightly distorted octahedral environment formed by four phosphonate oxygens and two water molecules. The carboxylate group is deprotonated but noncoordinated. This compound is a useful starting material for a number of topotactic transformations. Upon heating at 140 °C one (of the two) Mg-coordinated water molecule is lost, with the archetype 2D structure maintaining itself. However, the octahedral Mg in Mg(BPMGLY)(H(2)O)(2) is now converted to trigonal bipyramidal in Mg(BPMGLY)(H(2)O). Upon exposure of the monohydrate Mg(BPMGLY)(H(2)O) compound to ammonia, one molecule of ammonia is inserted into the interlayer space and stabilized by hydrogen bonding. The 2D layered structure of the product Mg(BPMGLY)(H(2)O)(NH(3)) is still maintained, with Mg now acquiring a pseudo-octahedral environment. All of these topotactic transformations are also accompanied by changes in hydrogen bonding between the layers.


Asunto(s)
Amoníaco/química , Glicina/química , Magnesio/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Glicina/análogos & derivados , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Agua/química
5.
Inorg Chem ; 51(14): 7689-98, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22757640

RESUMEN

Multifunctional materials, especially those combining two or more properties of interest, are attracting immense attention due to their potential applications. MOFs, metal organic frameworks, can be regarded as multifunctional materials if they show another useful property in addition to the adsorption behavior. Here, we report a new multifunctional light hybrid, MgH(6)ODTMP·2H(2)O(DMF)(0.5) (1), which has been synthesized using the tetraphosphonic acid H(8)ODTMP, octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid), by high-throughput methodology. Its crystal structure, solved by Patterson-function direct methods from synchrotron powder X-ray diffraction, was characterized by a 3D pillared open framework containing cross-linked 1D channels filled with water and DMF. Upon H(2)O and DMF removal and subsequent rehydration, MgH(6)ODTMP·2H(2)O (2) and MgH(6)ODTMP·6H(2)O (3) can be formed. These processes take place through crystalline-quasi-amorphous-crystalline transformations, during which the integrity of the framework is maintained. A water adsorption study, at constant temperature, showed that this magnesium tetraphosphonate hybrid reversibly equilibrates its lattice water content as a function of the water partial pressure. Combination of the structural study and gas adsorption characterization (N(2), CO(2), and CH(4)) indicates an ultramicroporous framework. High-pressure CO(2) adsorption data are also reported. Finally, impedance data indicates that 3 has high proton conductivity σ = 1.6 × 10(-3) S cm(-1) at T = 292 K at ~100% relative humidity with an activation energy of 0.31 eV.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Magnesio/química , Compuestos Organometálicos/química , Ácidos Fosforosos/química , Protones , Conductividad Eléctrica , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Porosidad , Difracción de Polvo , Propiedades de Superficie , Temperatura
6.
Materials (Basel) ; 15(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207833

RESUMEN

We review the progress in metal phosphate structural chemistry focused on proton conductivity properties and applications. Attention is paid to structure-property relationships, which ultimately determine the potential use of metal phosphates and derivatives in devices relying on proton conduction. The origin of their conducting properties, including both intrinsic and extrinsic conductivity, is rationalized in terms of distinctive structural features and the presence of specific proton carriers or the factors involved in the formation of extended hydrogen-bond networks. To make the exposition of this large class of proton conductor materials more comprehensive, we group/combine metal phosphates by their metal oxidation state, starting with metal (IV) phosphates and pyrophosphates, considering historical rationales and taking into account the accumulated body of knowledge of these compounds. We highlight the main characteristics of super protonic CsH2PO4, its applicability, as well as the affordance of its composite derivatives. We finish by discussing relevant structure-conducting property correlations for divalent and trivalent metal phosphates. Overall, emphasis is placed on materials exhibiting outstanding properties for applications as electrolyte components or single electrolytes in Polymer Electrolyte Membrane Fuel Cells and Intermediate Temperature Fuel Cells.

7.
Inorg Chem ; 50(21): 11202-11, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21951129

RESUMEN

A family of M-VP (M = Ni, Co, Cd, Mn, Zn, Fe, Cu, Pb; VP = vinylphosphonate) and M-PVP (M = Co, Cd; PVP = phenylvinylphosphonate) materials have been synthesized by hydrothermal methods and characterized by FT-IR, elemental analysis, and thermogravimetric analysis (TGA). Their structures were determined either by single crystal X-ray crystallography or from laboratory X-ray powder diffraction data. The crystal structure of some M-VP and M-PVP materials is two-dimensional (2D) layered, with the organic groups (vinyl or phenylvinyl) protruding into the interlamellar space. However, the Pb-VP and Cu-VP materials show dramatically different structural features. The porous, three-dimensional (3D) structure of Pb-VP contains the Pb center in a pentagonal pyramid. A Cu-VP variant of the common 2D layered structure shows a very peculiar structure. The structure of the material is 2D with the layers based upon three crystallographically distinct Cu atoms; an octahedrally coordinated Cu(2+) atom, a square planar Cu(2+) atom and a Cu(+) atom. The latter has an unusual co-ordination environment as it is 3-coordinated to two oxygen atoms with the third bond across the double bond of the vinyl group. Metal-coordinated water loss was studied by TGA and thermodiffractometry. The rehydration of the anhydrous phases to give the initial phase takes place rapidly for Cd-PVP but it takes several days for Co-PVP. The M-VP materials exhibit variable dehydration-rehydration behavior, with most of them losing crystallinity during the process.

8.
Dalton Trans ; 50(19): 6539-6548, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33890594

RESUMEN

We report herein the synthesis, structural characterization and electrocatalytic properties of three new coordination polymers, resulting from the combination of divalent metal (Ca2+, Cd2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid. In addition to the usual hydrothermal procedure, the Co2+ derivative could also be prepared by microwave-assisted synthesis, in much shorter times. The crystal structures were solved by ab initio calculations, from powder diffraction data. Compounds MII[O2P(CH2CH2COOH)(C6H5)]2 {M = Cd (1) or Ca (2)} crystallize in the monoclinic system and display a layered topology, with the phenyl groups pointing toward the interlayer space in a interdigitated fashion. Compound Co2[(O2P(CH2CH2COO)(C6H5)(H2O)]2·2H2O (3) presents a 1D structure composed of zig-zag chains, formed by edge-sharing cobalt octahedra, with the phenyl groups pointing outside. Packing of these chains is favored by hydrogen bond interactions via lattice water molecules. In addition, H-bonds along the chains are established with the participation of the water molecules and the hydrophilic groups from the ligand. However, the solid exhibits a low proton conductivity, attributed to the isolation of the hydrophilic regions caused by the arrangement of hydrophobic phenyl groups. Preliminary studies on the electrocatalytic performance for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have been conducted for compound 3 and its pyrolytic derivatives, which were previously thoroughly characterized. By comparison, another Co2+ phosphinate, 4, obtained by microwave-assisted synthesis, but with distinct stoichiometry and a known structure was also tested. For the OER, the best performance was achieved with a derivative of 3, prepared by heating this compound in N2 at 200 °C. This derivative showed overpotential (339 mV, at a current density of 10 mA cm-2) and Tafel slope (51.7 mV dec-1) values comparable to those of other Co2+ related materials.

9.
ACS Appl Mater Interfaces ; 13(13): 15279-15291, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764728

RESUMEN

Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln3+) with nitrilo-tris(methylenephosphonic acid) (H6NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln2(H4NMP)2(H2O)4](HSO4)2·nH2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4-5, Series I) and [Ln(H5NMP)]SO4·2H2O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10-3 and 10-2 S·cm-1 at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70-90 °C and 100% relative humidity and with similar proton conductivity.

10.
Inorg Chem ; 49(2): 761-8, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20014797

RESUMEN

Reactions of divalent cations (Mg(2+), Co(2+), Ni(2+), and Zn(2+)) with R,S-hydroxyphosphonoacetic acid (HPAA) in aqueous solutions (pH values ranging 1.0-4.0) yielded a range of crystalline hydrated M-HPAA hybrids. One-dimensional (1D) chain compounds were formed at room temperature whereas reactions conducted under hydrothermal conditions resulted in two-dimensional (2D) layered frameworks or, in some cases, three-dimensional (3D) networks incorporating various alkaline cations. 1D phases with compositions [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)].2H(2)O (M = Mg, Co, and Zn) were isolated. These compounds were dehydrated in liquid water to yield the corresponding [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] compounds lacking the lattice water between the 1D chains. [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] (M = Mg, Ni, Co, Zn) compounds were formed by crystallization at room temperature (at higher pH values) or also by partial dehydration of 1D compounds with higher hydration degrees. Complete dehydration of these 1D solids at 240-270 degrees C led to 3D phases, [M{HO3PCH(OH)CO(2)}]. The 2D layered compound [Mg{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] was obtained under hydrothermal conditions. For both synthesis methods, addition of alkali metal hydroxides to adjust the pH usually led to mixed phase materials, whereas direct reactions between the metal oxides and the hydroxyphosphonoacetic acid gave single phase materials. On the other hand, adjusting the pH with acetate salts and increasing the ratio M(2+)/HPAA and/or the A(+)/M(2+) ratio (A = Na, K) resulted in 3D networks, where the alkali cations were incorporated within the frameworks for charge compensation. The crystal structures of eight new M(II)-HPAA hybrids are reported herein and the thermal behavior related to dehydration/rehydration of some compounds are studied in detail.

11.
Dalton Trans ; 49(13): 3981-3988, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-31942881

RESUMEN

Synthesis redesign and derivatisation of Fe(ii)-hydroxyphosphonoacetate, incorporating different ammonia loads and M(ii) isomorphic substitutions (M = Mn, Co and Zn), have been implemented. The NH3 adsorption led to materials with enhanced proton conductivity, up to ∼10-3 S cm-1, although it caused a progressive amorphization. The Pair Distribution Function (PDF) analysis for this material confirmed the loss of crystallinity but the local order appeared to be maintained. The parent compound was shown to be an efficient photocatalyst for phenol, 4-chlorophenol and methylene blue even under mild conditions, with TOC removal of 75-90% at 50-150 min of reaction. The M(ii)-substituted derivatives displayed similar behaviour in properties, and therefore their multifunctional character, as the parent compound, although with slightly reduced capabilities.

12.
Chemistry ; 15(27): 6612-8, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19479926

RESUMEN

The structures of various layered calcium tetraphosphonates (CaH6DTMP; H8DTMP=hexamethylenediamine tetrakis(methylenephosphonic acid)), have been determined. Starting from CaH6DTMP.2H2O, thermal treatment and subsequent exposure to NH3 and/or H2O vapors led to four new compounds that showed high storage capacity of guest species between the layers (up to ten H2O/NH3 molecules) and a maximum volume increase of 55 %. The basic building block for these phosphonates consists of an eight-membered ring chelating Ca2+ through two phoshonate groups, and the organic ligand is located within the layers, which are held together by hydrogen bonds. The structural analysis revealed that the uptake/removal of guest species (H2O and NH3) induces significant changes in the framework not only by changing the interlayer distances but also through important conformational changes of the organic ligand. An anisotropic breathing motion could be quantified by the changes of the unit-cell dimensions and ligand arrangements in four crystalline derivatives. Complete characterization revealed the existence of interconversion reactions between the different phases upon gas uptake and release. The observed behavior represents, to the best of our knowledge, the first example of a breathing-like mechanism in metal phosphonates that possess a 2D topology.

13.
Dalton Trans ; 41(14): 4045-51, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22278089

RESUMEN

A new flexible ultramicroporous solid, La(H(5)DTMP)·7H(2)O (1), has been crystallized at room temperature using the tetraphosphonic acid H(8)DTMP, hexamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid). Its crystal structure, solved by synchrotron powder X-ray diffraction, is characterised by a 3D pillared open-framework containing 1D channels filled with water. Upon dehydration, a new related crystalline phase, La(H(5)DTMP) (2) is formed. Partial rehydration of 2 led to La(H(5)DTMP)·2H(2)O (3). These new phases contain highly corrugated layers showing different degrees of conformational flexibility of the long organic chain. The combination of the structural study and the gas adsorption characterization (N(2) and CO(2)) suggests an ultramicroporous flexible framework. NO isotherms are indicative of a strong irreversible adsorption of NO within the pores. Impedance data indicates that 1 is a proton-conductor with a conductivity of 8 × 10(-3) S cm(-1) at 297 K and 98% of relative humidity, and an activation energy of 0.25 eV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA