Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 40: 105-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26969550

RESUMEN

NitroMAC (French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid (HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography (HPLC)-visible absorption at 540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer (LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. NitroMAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below 250 ppt was sampled. While NitroMAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Ácido Nitroso/análisis , Atmósfera , Diseño de Equipo , Francia , Límite de Detección , Fotometría/instrumentación , Fotometría/métodos
2.
Sci Total Environ ; 941: 173311, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782275

RESUMEN

Over the last decade, the French ATR-42 research aircraft explored contrasting polluted plumes in the Paris megacity, the North-West Mediterranean Basin (WMB) and South West Africa (SWA) in the framework of the MEGAPOLI, ChArMEx/SAFMED and DACCIWA international projects, respectively. Major VOCs were measured by a high-sensitivity airborne Quadrupole Proton Transfer Reaction Mass Spectrometer (Q-PTR-MS), showing a robust and consistent response. Regardless of the location, the air mass composition is dominated by oxygenated VOC (OVOC: methanol, formaldehyde, acetaldehyde, acetone and isoprene oxidation products), which explain 70 % of the total VOC burden measured by the Q-PTR-MS. The distribution between OVOC, anthropogenic AVOC and biogenic BVOC is consistent between the three regions. The calculated OH loss rates (12 s-1) and ozone-forming potential (1200 OFP-relative ppb) are three times higher in the SWA plumes. These values are consistent with the calculated and measured reactivities at the ground. The reactivity of the plumes is by far dominated by biogenic BVOC. The chemical processing of VOC was examined by establishing various metrics linking Δ[O/VOC] (VOC or oxygenated VOC), plume dilution and the time processing of the plume (cumulative OH exposure Δt[OH] and the linear decay of primary AVOC and the production/decay of secondary OVOC). As expected, ∆[Ox]/∆[CO] increases with Δt[OH], with significant R2 (0.58 to 0.93). AVOC (aromatics) usually show a decay rate between -0.5 and -3.2 pptAVOC ppbCO-1 per hour, while OVOC either show an increase (secondary production) or a decrease. The production rate is by far the strongest, up to 18 pptOVOC ppbCO-1 per hour (acetaldehyde) during the eastern flight 33 in Paris. Our results set a benchmark for future photochemical studies to compare with. While the anthropogenic origin of some BVOC (terpenoids) and interferences are not excluded, it also emphasizes the importance of the VOC biogenic fraction in anthropogenically influenced environments, which is expected to increase in a warming climate.

3.
ACS Earth Space Chem ; 6(10): 2412-2431, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36303720

RESUMEN

This work presents the results from a set of aerosol- and gas-phase measurements collected during the BIO-MAÏDO field campaign in Réunion between March 8 and April 5, 2019. Several offline and online sampling devices were installed at the Maïdo Observatory (MO), a remote high-altitude site in the Southern Hemisphere, allowing the physical and chemical characterization of atmospheric aerosols and gases. The evaluation of short-lived gas-phase measurements allows us to conclude that air masses sampled during this period contained little or no anthropogenic influence. The dominance of sulfate and organic species in the submicron fraction of the aerosol is similar to that measured at other coastal sites. Carboxylic acids on PM10 showed a significant contribution of oxalic acid, a typical tracer of aqueous processed air masses, increasing at the end of the campaign. This result agrees with the positive matrix factorization analysis of the submicron organic aerosol, where more oxidized organic aerosols (MOOAs) dominated the organic aerosol with an increasing contribution toward the end of the campaign. Using a combination of air mass trajectories (model predictions), it was possible to assess the impact of aqueous phase processing on the formation of secondary organic aerosols (SOAs). Our results show how specific chemical signatures and physical properties of air masses, possibly affected by cloud processing, can be identified at Réunion. These changes in properties are represented by a shift in aerosol size distribution to large diameters and an increased contribution of secondary sulfate and organic aerosols after cloud processing.

4.
J Environ Monit ; 10(3): 325-30, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18392274

RESUMEN

Five marine cosmopolitan phytoplankton species namely; Calcidiscus leptoporus, Emiliania huxleyi, Phaeodactylum tricornutum, Chaetoceros neogracilis and Dunaliella tertiolecta were screened for emissions of selected VOCs using head space gas chromatography/mass spectrometry (HS-GC/MS) in single ion mode. The VOCs investigated included isoprene and various halogenated compounds. Among the different algae groups, the two diatoms Ch. neogracilis and P. tricornutum were the strongest emitters of methyl bromide (CH3Br), and Ch. neogracilis was the strongest emitter of isoprene. Furthermore, we present evidence that several chlorinated organic compounds, normally considered as anthropogenic, can be produced from marine phytoplankton (namely chloroform, dichloromethane, trichloroethylene, tetrachloroethylene, chlorobenzene and dichlorobenzene).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos , Fitoplancton/efectos de los fármacos , Contaminantes Químicos del Agua , Animales , Butadienos/análisis , Butadienos/toxicidad , Hemiterpenos/análisis , Hemiterpenos/toxicidad , Hidrocarburos Halogenados/análisis , Hidrocarburos Halogenados/toxicidad , Compuestos Orgánicos/análisis , Compuestos Orgánicos/toxicidad , Pentanos/análisis , Pentanos/toxicidad , Fitoplancton/fisiología , Trihalometanos/análisis , Trihalometanos/toxicidad , Volatilización , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA