Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38676945

RESUMEN

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Asunto(s)
Evolución Molecular , Perforina , Anémonas de Mar , Animales , Anémonas de Mar/genética , Perforina/metabolismo , Perforina/genética , Duplicación de Gen , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Filogenia , Familia de Multigenes
2.
BMC Biol ; 16(1): 108, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261880

RESUMEN

BACKGROUND: Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an "explosive" organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. RESULTS: In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1-cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. CONCLUSIONS: Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes.


Asunto(s)
Nematocisto/embriología , Anémonas de Mar/embriología , Anémonas de Mar/genética , Factores de Transcripción/genética , Transcriptoma , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Nematocisto/metabolismo , Factores de Transcripción/metabolismo
3.
RNA Biol ; 14(12): 1727-1741, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28783426

RESUMEN

PIWI-interacting RNAs (piRNAs) and associated proteins comprise a conserved pathway for silencing transposons in metazoan germlines. piRNA pathway components are also expressed in multipotent somatic stem cells in various organisms. piRNA functions have been extensively explored in bilaterian model systems, however, comprehensive studies in non-bilaterian phyla remain limited. Here we investigate the piRNA pathway during the development of Nematostella vectensis, a well-established model system belonging to Cnidaria, the sister group to Bilateria. To date, no population of somatic stem cells has been identified in this organism, despite its long life-span and regenerative capacities that require a constant cell-renewal. We show that Nematostella piRNA pathway components are broadly expressed in early developmental stages, while piRNAs themselves show differential expression, suggesting specific developmental roles of distinct piRNA families. In adults, piRNA associated proteins are enriched in the germline but also expressed in somatic cells, indicating putative stem cell properties. Furthermore, we provide experimental evidence that Nematostella piRNAs cleave transposable elements as well as protein-coding genes. Our results demonstrate that somatic expression of piRNA associated proteins as well as the roles of piRNAs in transposon repression and gene regulation are likely ancestral features that evolved before the split between Cnidaria and Bilateria.


Asunto(s)
ARN Interferente Pequeño/genética , Anémonas de Mar/genética , Animales , Proteínas Argonautas/genética , Evolución Biológica , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Sistemas de Lectura Abierta , Filogenia , Interferencia de ARN , ARN Mensajero/genética
4.
Cell Rep ; 30(13): 4473-4489.e5, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234481

RESUMEN

Terminal selectors are transcription factors that control the morphological, physiological, and molecular features that characterize distinct cell types. Here, we show that, in the sea anemone Nematostella vectensis, NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types, including cnidocytes and NvElav1-expressing neurons. Morphological analyses of NvPOU4 mutants crossed to transgenic reporter lines show that the loss of NvPOU4 does not affect the initial specification of neural cells. Transcriptomes derived from the mutants and from different neural cell populations reveal that NvPOU4 is required for the execution of the terminal differentiation program of these neural cells. These findings suggest that POU4 genes have ancient functions as terminal selectors for morphologically and functionally disparate types of neurons and they provide experimental support for the relevance of terminal selectors for understanding the evolution of cell types.


Asunto(s)
Sistema Nervioso/metabolismo , Anémonas de Mar/genética , Factores de Transcripción/genética , Animales , Blástula/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glutamatos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Anémonas de Mar/citología , Factores de Transcripción/metabolismo , Transcriptoma/genética , Transgenes
5.
Elife ; 72018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29424690

RESUMEN

Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle.


Asunto(s)
Venenos/análisis , Anémonas de Mar/embriología , Ponzoñas/biosíntesis , Ponzoñas/química , Animales , Perfilación de la Expresión Génica , Larva/metabolismo , Estadios del Ciclo de Vida , Anémonas de Mar/metabolismo , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA