Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 52(6): 1901-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648565

RESUMEN

Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage.


Asunto(s)
Técnicas de Tipificación Bacteriana , Portador Sano/microbiología , Infecciones Meningocócicas/microbiología , Tipificación Molecular , Neisseria meningitidis/clasificación , Neisseria meningitidis/aislamiento & purificación , Adolescente , Antígenos Bacterianos/análisis , Portador Sano/epidemiología , ADN Bacteriano/genética , Femenino , Variación Genética , Genotipo , Humanos , Italia/epidemiología , Estudios Longitudinales , Masculino , Infecciones Meningocócicas/epidemiología , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Orofaringe/microbiología , Serotipificación , Adulto Joven
2.
BMC Microbiol ; 14: 111, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24779381

RESUMEN

BACKGROUND: Serogroup B meningococcal (MenB) isolates currently account for approximately 90% of invasive meningococcal disease (IMD) in Greece with ST-162 clonal complex predominating. The potential of a multicomponent meningococcal B vaccine (4CMenB) recently licensed in Europe was investigated in order to find whether the aforementioned vaccine will cover the MenB strains circulating in Greece. A panel of 148 serogroup B invasive meningococcal strains was characterized by multilocus sequence typing (MLST) and PorA subtyping. Vaccine components were typed by sequencing for factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA) and Neisseria adhesin A (NadA). Their expression was explored by Meningococcal Antigen Typing System (MATS). RESULTS: Global strain coverage predicted by MATS was 89.2% (95% CI 63.5%-98.6%) with 44.6%, 38.5% and 6.1% of strains covered by one, two and three vaccine antigens respectively. NHBA was the antigen responsible for the highest coverage (78.4%), followed by fHbp (52.7%), PorA (8.1%) and NadA (0.7%). The coverage of the major genotypes did not differ significantly. The most prevalent MLST genotype was the ST-162 clonal complex , accounting for 44.6% of the strains in the panel and with a predicted coverage of 86.4%, mainly due to NHBA and fHbp. CONCLUSIONS: 4CMenB has the potential to protect against a significant proportion of Greek invasive MenB strains.


Asunto(s)
Variación Genética , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Antígenos Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Grecia/epidemiología , Humanos , Infecciones Meningocócicas/inmunología , Epidemiología Molecular , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/inmunología , Estudios Retrospectivos , Análisis de Secuencia de ADN
3.
Proc Natl Acad Sci U S A ; 108(11): 4494-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368196

RESUMEN

Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/genética , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Filogenia , Recombinación Genética , Secuencia de Bases , Inversión Cromosómica/genética , Segregación Cromosómica/genética , Secuencia Conservada/genética , ADN Bacteriano/genética , Conversión Génica/genética , Genes Bacterianos/genética , Interacciones Huésped-Patógeno/genética , Humanos , Mutagénesis Insercional/genética , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/patogenicidad , Operón/genética , Especificidad de la Especie
4.
Proc Natl Acad Sci U S A ; 107(45): 19490-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20962280

RESUMEN

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Asunto(s)
Antígenos Bacterianos/análisis , Técnicas de Tipificación Bacteriana/métodos , Reacciones Cruzadas/inmunología , Vacunas Meningococicas/farmacología , Neisseria meningitidis Serogrupo B/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/uso terapéutico , Ensayo de Inmunoadsorción Enzimática/métodos , Genotipo , Humanos , Vacunas Meningococicas/inmunología , Especificidad de la Especie
5.
Infect Immun ; 79(2): 970-81, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21149595

RESUMEN

Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Factor H de Complemento/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Sistema Complemento , Femenino , Variación Genética , Humanos , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Ratones , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Conejos
6.
J Exp Med ; 195(11): 1445-54, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12045242

RESUMEN

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Asunto(s)
Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Alelos , Secuencia de Aminoácidos , Animales , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Composición de Base , Secuencia de Bases , Western Blotting , Secuencia Conservada/genética , Evolución Molecular , Citometría de Flujo , Transferencia de Gen Horizontal/genética , Humanos , Sueros Inmunes/inmunología , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/microbiología , Meningitis Meningocócica/prevención & control , Ratones , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/patogenicidad , Ratas
7.
J Exp Med ; 197(6): 789-99, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12642606

RESUMEN

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


Asunto(s)
Antígenos Bacterianos/inmunología , Lipoproteínas/inmunología , Neisseria meningitidis/inmunología , Isoformas de Proteínas/inmunología , Vacunación , Adulto , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/clasificación , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Secuencia de Bases , Femenino , Genes Bacterianos , Humanos , Lactante , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ratones , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
8.
Cell Microbiol ; 11(7): 1044-63, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19290916

RESUMEN

The Oca (Oligomeric coiled-coil adhesin) family is a subgroup of the bacterial trimeric autotransporter adhesins, which includes structurally related proteins, such as YadA of Yersinia enterocolitica and NadA of Neisseria meningitidis. In this study, we searched in silico for novel members of this family in bacterial genomes and identified HadA (Haemophilus adhesin A), a trimeric autotransporter expressed only by Haemophilus influenzae biogroup aegyptius causing Brazilian purpuric fever (BPF), a fulminant septicemic disease of children. By comparative genomics and sequence analysis we predicted that the hadA gene is harboured on a mobile genetic element unique to BPF isolates. Biological analysis of HadA in the native background was limited because this organism is not amenable to genetic manipulation. Alternatively, we demonstrated that expression of HadA confers to a non-invasive Escherichia coli strain the ability to adhere to human cells and to extracellular matrix proteins and to induce in vitro bacterial aggregation and microcolony formation. Intriguingly, HadA is predicted to lack the typical N-terminal head domain of Oca proteins generally associated with cellular receptor binding. We propose here a structural model of the HadA coiled-coil stalk and show that the N-terminal region is still responsible of the binding activity and a KGD motif plays a role. Interestingly, HadA promotes bacterial entry into mammalian cells. Our results show a cytoskeleton re-arrangement and an involvement of clathrin in the HadA-mediated internalization. These data give new insights on the structure-function relationship of oligomeric coiled-coil adhesins and suggest a potential role of this protein in the pathogenesis of BPF.


Asunto(s)
Adhesinas Bacterianas/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/fisiología , Haemophilus influenzae/patogenicidad , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Línea Celular , Biología Computacional , ADN Bacteriano/química , ADN Bacteriano/genética , Genómica , Haemophilus influenzae/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Cuaternaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia
9.
Vaccine ; 38(47): 7542-7550, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33036804

RESUMEN

BACKGROUND: The multicomponent meningococcal serogroup B vaccine (4CMenB) is currently indicated for active immunization against invasive meningococcal disease caused by Neisseria meningitidis serogroup B (MenB). However, genes encoding the 4CMenB antigens are also variably present and expressed in strains belonging to other meningococcal serogroups. In this study, we evaluated the ability of antibodies raised by 4CMenB immunisation to induce complement-mediated bactericidal killing of non-MenB strains. METHODS: A total of 227 invasive non-MenB disease isolates were collected between 1 July 2007 and 30 June 2008 from England and Wales, France, and Germany; 41 isolates were collected during 2012 from Brazil. The isolates were subjected to genotypic analyses. A subset of 147 isolates (MenC, MenW and MenY) representative of the meningococcal genetic diversity of the total sample were tested in the human complement serum bactericidal antibody assay (hSBA) using sera from infants immunised with 4CMenB. RESULTS: Serogroup and clonal complex repertoires of non-MenB isolates were different for each country. For the European panel, MenC, MenW and MenY isolates belonged mainly to ST-11, ST-22 and ST-23 complexes, respectively. For the Brazilian panel, most MenC and MenW isolates belonged to the ST-103 and ST-11 complexes, respectively, and most MenY isolates were not assigned to clonal complexes. Of the 147 non-MenB isolates, 109 were killed in hSBA, resulting in an overall coverage of 74%. CONCLUSION: This is the first study in which 147 non-MenB serogroup isolates have been analysed in hSBA to evaluate the potential of a MenB vaccine to cover strains belonging to other serogroups. These data demonstrate that antibodies raised by 4CMenB are able to induce bactericidal killing of 109 non-MenB isolates, representative of non-MenB genetic and geographic diversity. These findings support previous evidence that 4CMenB immunisation can provide cross-protection against non-MenB strains in infants, which represents an added benefit of 4CMenB vaccination.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Antígenos Bacterianos/genética , Brasil , Inglaterra , Francia , Alemania , Humanos , Lactante , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis Serogrupo B/genética , Serogrupo , Vacunación , Gales
10.
J Clin Microbiol ; 47(11): 3577-85, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759227

RESUMEN

Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)- outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.


Asunto(s)
Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Elementos Transponibles de ADN , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/clasificación , Neisseria meningitidis/aislamiento & purificación , Análisis por Conglomerados , Dermatoglifia del ADN , Inglaterra/epidemiología , Genotipo , Humanos , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Epidemiología Molecular , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Análisis de Secuencia de ADN , Homología de Secuencia , Gales/epidemiología
11.
Vaccine ; 37(7): 991-1000, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30661831

RESUMEN

BACKGROUND: The Meningococcal Antigen Typing System (MATS) was developed to identify meningococcus group B strains with a high likelihood of being covered by the 4CMenB vaccine, but is limited by the requirement for viable isolates from culture-confirmed cases. We examined if antigen genotyping could complement MATS in predicting strain coverage by the 4CMenB vaccine. METHODS: From a panel of 3912 MATS-typed invasive meningococcal disease isolates collected in England and Wales in 2007-2008, 2014-2015 and 2015-2016, and in 16 other countries in 2000-2015, 3481 isolates were also characterized by antigen genotyping. Individual associations between antigen genotypes and MATS coverage for each 4CMenB component were used to define a genetic MATS (gMATS). gMATS estimates were compared with England and Wales human complement serum bactericidal assay (hSBA) data and vaccine effectiveness (VE) data from England. RESULTS: Overall, 81% of the strain panel had genetically predictable MATS coverage, with 92% accuracy and highly concordant results across national panels (Lin's accuracy coefficient, 0.98; root-mean-square deviation, 6%). England and Wales strain coverage estimates were 72-73% by genotyping (66-73% by MATS), underestimating hSBA values after four vaccine doses (88%) and VE after two doses (83%). The gMATS predicted strain coverage in other countries was 58-88%. CONCLUSIONS: gMATS can replace MATS in predicting 4CMenB strain coverage in four out of five cases, without requiring a cultivable isolate, and is open to further improvement. Both methods underestimated VE in England. Strain coverage predictions in other countries matched or exceeded England and Wales estimates.


Asunto(s)
Antígenos Bacterianos/genética , Genotipo , Técnicas de Genotipaje/métodos , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/clasificación , Salud Global , Humanos , Meningitis Meningocócica/epidemiología , Epidemiología Molecular/métodos , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/aislamiento & purificación
12.
Infect Immun ; 76(9): 4232-40, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18591239

RESUMEN

No broadly protective vaccine is available for the prevention of group B meningococcal disease. One promising candidate is factor H-binding protein (fHbp), which is present in all strains but often sparsely expressed. We prepared seven murine immunoglobulin G monoclonal antibodies (MAbs) against fHbp from antigenic variant group 2 (v.2) or v.3 ( approximately 40% of group B strains). Although none of the MAbs individually elicited bactericidal activity with human complement, all had activity in different combinations. We used MAb reactivity with strains expressing fHbp polymorphisms and site-specific mutagenesis to identify residues that are important for epitopes recognized by six of the v.2 or v.3 MAbs and by two v.1 MAbs that were previously characterized. Residues affecting v.2 or v.3 epitopes resided between amino acids 174 and 216, which formed an eight-stranded beta-barrel in the C domain, while residues affecting the v.1 epitopes included amino acids 121 and 122 of the B domain. Pairs of MAbs were bactericidal when their respective epitopes involved residues separated by 16 to 20 A and when at least one of the MAbs inhibited the binding of fH, a downregulatory complement protein. In contrast, there was no cooperative bactericidal activity when the distance between residues was >or=27 A or

Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas del Sistema Complemento/inmunología , Viabilidad Microbiana , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/aislamiento & purificación , Anticuerpos Monoclonales/aislamiento & purificación , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Mapeo Epitopo , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
PLoS One ; 11(3): e0150721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950303

RESUMEN

BACKGROUND: A novel meningococcal multicomponent vaccine, 4CMenB (Bexsero®), has been approved in Europe, Canada, Australia and US. The potential impact of 4CMenB on strain coverage is being estimated by using Meningococcal Antigen Typing System (MATS), an ELISA assay which measures vaccine antigen expression and diversity in each strain. Here we show the genetic characterization and the 4CMenB potential coverage of Spanish invasive strains (collected during one epidemiological year) compared to other European countries and discuss the potential reasons for the lower estimate of coverage in Spain. MATERIAL AND METHODS: A panel of 300 strains, a representative sample of all serogroup B Neisseria meningitidis notified cases in Spain from 2009 to 2010, was characterized by multilocus sequence typing (MLST) and FetA variable region determination. 4CMenB vaccine antigens, PorA, factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial adhesin A (NadA) were molecularly typed by sequencing. PorA coverage was assigned to strain with VR2 = 4. The levels of expression and cross-reactivity of fHbp, NHBA and NadA were analyzed using MATS ELISA. FINDINGS: Global estimated strain coverage by MATS was 68.67% (95% CI: 47.77-84.59%), with 51.33%, 15.33% and 2% of strains covered by one, two and three vaccine antigens, respectively. The predicted strain coverage by individual antigens was: 42% NHBA, 36.33% fHbp, 8.33% PorA and 1.33% NadA. Coverage within the most prevalent clonal complexes (cc) was 70.37% for cc 269, 30.19% for cc 213 and 95.83% for cc 32. CONCLUSIONS: Clonal complexes (cc) distribution accounts for variations in strain coverage, so that country-by-country investigations of strain coverage and cc prevalence are important. Because the cc distribution could also vary over time, which in turn could lead to changes in strain coverage, continuous detailed surveillance and monitoring of vaccine antigens expression is needed in those countries where the multicomponent vaccine is introduced. This is really important in countries like Spain where most of the strains are predicted to be covered by only one vaccine antigen and the chance for escape mutants to emerge with vaccine use is higher. Based on the observed data, cc213 should receive special attention as it is associated with low predicted strain coverage, and has recently emerged in Spain.


Asunto(s)
Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Antígenos Bacterianos/inmunología , Humanos , Tipificación Molecular , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Neisseria meningitidis/aislamiento & purificación , España , Especificidad de la Especie
14.
Expert Rev Vaccines ; 14(6): 841-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25704037

RESUMEN

Neisseria meningitidis is a leading cause of meningitis and sepsis worldwide. The first broad-spectrum multicomponent vaccine against serogroup B meningococcus (MenB), 4CMenB (Bexsero(®)), was approved by the EMA in 2013, for prevention of MenB disease in all age groups, and by the US FDA in January 2015 for use in adolescents. A second protein-based MenB vaccine has also been approved in the USA for adolescents (rLP2086, Trumenba(®)). Both vaccines contain the lipoprotein factor H-binding protein (fHbp). Preclinical studies demonstrated that fHbp elicits a robust bactericidal antibody response that correlates with the amount of fHbp expressed on the bacterial surface. fHbp is able to selectively bind human factor H, the key regulator of the alternative complement pathway, and this has important implications both for meningococcal pathogenesis and for vaccine design. Here, we review the functional and structural properties of fHbp, the strategies that led to the design of the two fHbp-based vaccines and the data generated during clinical studies.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Factores de Virulencia/inmunología , Humanos , Infecciones Meningocócicas/epidemiología , Vacunas Meningococicas/aislamiento & purificación , Estados Unidos/epidemiología
15.
Vaccine ; 32(23): 2722-31, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24631075

RESUMEN

Surface-expressed protein antigens such as factor H-binding protein (fHbp), Neisserial adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and Porin protein A (PorA); all express sequence variability that can affect their function as protective immunogens when used in meningococcal serogroup B vaccines like the recently-approved 4CMenB (Bexsero(®)). We assessed the sequence variation of genes coding for these proteins and two additional proteins ("fusion partners" to fHbp and NHBA) in pathogenic isolates from a recent low incidence period (endemic situation; 2005-2006) in Norway. Findings among strains from this panel were contrasted to what was found among isolates from a historic outbreak (epidemic situation; 1985-1990). Multilocus sequence typing revealed 14 clonal complexes (cc) among the 66 endemic strains, while cc32 vastly predominated in the 38-strain epidemic panel. Serogroup B isolates accounted for 50/66 among endemic strains and 28/38 among epidemic strains. Potential strain-coverage ("sequence match") for the 4CMenB vaccine was identified among the majority (>70%) of the endemic serogroup B isolates and all of the epidemic serogroup B isolates evaluated. Further information about the degree of expression, surface availability and the true cross-reactivity for the vaccine antigens will be needed to fully characterize the clinical strain-coverage of 4CMenB in various geographic and epidemiological situations.


Asunto(s)
Adhesinas Bacterianas/genética , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/genética , Neisseria meningitidis Serogrupo B/clasificación , Adhesinas Bacterianas/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Técnicas de Tipificación Bacteriana , Epidemias , Técnicas de Genotipaje , Humanos , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/genética , Noruega , Filogenia , Porinas/genética , Porinas/inmunología
16.
Clin Vaccine Immunol ; 21(7): 966-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807056

RESUMEN

Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Adhesinas Bacterianas/clasificación , Secuencia de Aminoácidos , Antígenos Bacterianos/inmunología , Adhesión Bacteriana/genética , Secuencia de Bases , Variación Genética , Humanos , Meningitis Meningocócica/prevención & control , Datos de Secuencia Molecular , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Análisis de Secuencia de ADN
17.
Vaccine ; 31(7): 1113-6, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23261039

RESUMEN

A new vaccine, 4CMenB, is composed of surface proteins of Neisseria meningitidis and is aimed to target serogroup B (MenB) isolates. The vaccine components are present in meningococcal isolates of other serogroups allowing potential use against meningococcal isolates belonging to non-B serogroups. Isolates of serogroup X (MenX) have been emerged in countries of the African meningitis belt. 4CMenB may offer a vaccine strategy against these isolates as there is no available capsule-based vaccine against MenX. We used the Meningococcal Antigen Typing System (MATS) to determine presence, diversity and levels of expression of 4CMenB antigens among 9 MenX isolates from several African countries in order to estimate the potential coverage of MenX by the 4CMenB vaccine. We performed bactericidal assays against these isolates, using pooled sera from 4CMenB-vaccinated infants, adolescents and adults. The African MenX isolates belonged to the same genotype but showed variation in the vaccine antigens. MATS data and bactericidal assays suggest coverage of the 9 African MenX isolates by 4CMenB but not of two unrelated MenX isolates from France. 4CMenB vaccine can be considered for further investigation to control MenX outbreaks in Africa.


Asunto(s)
Brotes de Enfermedades , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Adolescente , Adulto , África/epidemiología , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Actividad Bactericida de la Sangre , Femenino , Francia/epidemiología , Expresión Génica , Variación Genética , Genotipo , Humanos , Lactante , Masculino , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/administración & dosificación , Viabilidad Microbiana , Neisseria meningitidis/aislamiento & purificación
18.
PLoS One ; 8(5): e65043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717687

RESUMEN

Studies of meningococcal evolution and genetic population structure, including the long-term stability of non-random associations between variants of surface proteins, are essential for vaccine development. We analyzed the sequence variability of factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisseria adhesin A (NadA), three major antigens in the multicomponent meningococcal serogroup B vaccine 4CMenB. A panel of invasive isolates collected in the Netherlands over a period of 50 years was used. To our knowledge, this strain collection covers the longest time period of any collection available worldwide. Long-term persistence of several antigen sub/variants and of non-overlapping antigen sub/variant combinations was observed. Our data suggest that certain antigen sub/variants including those used in 4CMenB are conserved over time and promoted by selection.


Asunto(s)
Adhesinas Bacterianas/genética , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Variación Genética , Neisseria meningitidis Serogrupo B/genética , Adhesinas Bacterianas/química , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Evolución Molecular , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/clasificación , Países Bajos , Filogenia , Factores de Tiempo
19.
Lancet Infect Dis ; 13(5): 416-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23414709

RESUMEN

BACKGROUND: A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS: We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS: 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION: MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING: Novartis Vaccines and Diagnostics.


Asunto(s)
Genes Bacterianos , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Adhesinas Bacterianas/análisis , Antígenos Bacterianos/genética , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/análisis , Ensayo de Inmunoadsorción Enzimática , Europa (Continente)/epidemiología , Genotipo , Geografía , Humanos , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/microbiología , Tipificación de Secuencias Multilocus/métodos , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Vigilancia de la Población/métodos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
20.
Vaccine ; 29(5): 1072-81, 2011 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-21130753

RESUMEN

Factor H binding protein (fHbp), one of the main antigens of new vaccines against serogroup B meningococcus, varies in amino acid sequence and level of expression in different clinical isolates. To evaluate the contribution of amino acid sequence variability to vaccine coverage, we constructed a strain that is susceptible to bactericidal killing only by anti-fHbp antibodies and engineered it to express equal levels of 10 different fHbp sub-variants from a constitutive promoter. Testing of these isogenic strains showed that sera from mice or adult volunteers vaccinated with fHbp variant 1.1 were bactericidal against all sub-variants 1 sequences, however the titer against the most distant sequences were several times lower. Sera from vaccinated infants were more susceptible to amino acid variations and they had lower or no bactericidal activity against the distant sub-variants 1 sequences in comparison with sera from adults given the same vaccines. The low coverage provided by fHbp could be overcome using a multicomponent vaccine. We conclude that fHbp is a very important antigen that induces bactericidal antibodies in animals, adults and infants. However, given its high variability of sequence and expression level, it is unlikely that fHbp alone can provide good protection in infants against the distant amino acid sequence variants and therefore multicomponent vaccines inducing protective immunity also against other antigens are more likely to induce a broad protective immunity in all age groups.


Asunto(s)
Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Actividad Bactericida de la Sangre/inmunología , Sueros Inmunes/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Polimorfismo Genético , Adulto , Animales , Femenino , Humanos , Lactante , Ratones , Viabilidad Microbiana , Neisseria meningitidis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA