Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biol Cell ; 115(4): e2200111, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36751133

RESUMEN

Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Humanos , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal , Expresión Génica , Retículo Endoplásmico/metabolismo
2.
Semin Cell Dev Biol ; 94: 11-19, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30659886

RESUMEN

About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Animales , Humanos
3.
EMBO J ; 36(17): 2567-2580, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701483

RESUMEN

The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Disentería Bacilar/metabolismo , Interacciones Huésped-Patógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Shigella flexneri/fisiología , Calpaína/metabolismo , Adhesión Celular , Células HeLa , Humanos , Transducción de Señal
4.
J Physiol ; 595(10): 3143-3164, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28220501

RESUMEN

KEY POINTS: Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP3 ) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca2+ ]i ) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca2+ -mobilizing hormones resulting in more sustained and prolonged [Ca2+ ]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP3 ) accumulation and phospholipase C (PLC) activity were significantly potentiated in hepatocytes from alcohol-fed rats compared to controls. Removal of extracellular calcium, or chelation of intracellular calcium did not normalize the differences in hormone-stimulated PLC activity, indicating calcium-dependent PLCs are not upregulated by alcohol. We propose that the liver 'adapts' to chronic alcohol exposure by increasing hormone-dependent IP3 formation, leading to aberrant calcium increases, which may contribute to hepatocyte injury.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/metabolismo , Señalización del Calcio , Hepatocitos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Calcio/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas Sprague-Dawley , Vasopresinas/farmacología
5.
Hepatology ; 60(2): 700-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24715669

RESUMEN

UNLABELLED: Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca(2+) . We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. CONCLUSION: We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct development and have important potential for therapeutic strategies, including bioengineered liver approaches.


Asunto(s)
Sistema Biliar/citología , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Células Epiteliales/citología , Hepatocitos/citología , Células Madre Pluripotentes/citología , Biomarcadores , Diferenciación Celular , Linaje de la Célula , Polaridad Celular , Células Cultivadas , Colagogos y Coleréticos/farmacología , Medios de Cultivo/farmacología , Hormona de Crecimiento Humana/farmacología , Humanos , Interleucina-6/farmacología , Ácido Taurocólico/farmacología , Transcriptoma
6.
Biochim Biophys Acta ; 1832(12): 1922-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816565

RESUMEN

Sphingosine kinases (SphKs) and their product sphingosine-1-phosphate (S1P) have been reported to regulate apoptosis and survival of liver cells. Cholestatic liver diseases are characterized by cytotoxic levels of bile salts inducing liver injury. It is unknown whether SphKs and/or S1P play a role in this pathogenic process. Here, we investigated the putative involvement of SphK1 and S1P in bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to glycochenodeoxycholic acid (GCDCA) to induce apoptosis. GCDCA-exposed hepatocytes were co-treated with S1P, the SphK1 inhibitor Ski-II and/or specific antagonists of S1P receptors (S1PR1 and S1PR2). Apoptosis and necrosis were quantified. Ski-II significantly reduced GCDCA-induced apoptosis in hepatocytes (-70%, P<0.05) without inducing necrosis. GCDCA increased the S1P levels in hepatocytes (P<0.05). GCDCA induced [Ca(2+)] oscillations in hepatocytes and co-treatment with the [Ca(2+)] chelator BAPTA repressed GCDCA-induced apoptosis. Ski-II inhibited the GCDCA-induced intracellular [Ca(2+)] oscillations. Transcripts of all five S1P receptors were detected in hepatocytes, of which S1PR1 and S1PR2 appear most dominant. Inhibition of S1PR1, but not S1PR2, reduced GCDCA-induced apoptosis by 20%. Exogenous S1P also significantly reduced GCDCA-induced apoptosis (-50%, P<0.05), however, in contrast to the GCDCA-induced (intracellular) SphK1 pathway, this was dependent on S1PR2 and not S1PR1. Our results indicate that SphK1 plays a pivotal role in mediating bile salt-induced apoptosis in hepatocytes in part by interfering with intracellular [Ca(2+)] signaling and activation of S1PR1.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Hepatocitos/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Animales , Western Blotting , Caspasa 3/metabolismo , Células Cultivadas , Detergentes/farmacología , Fármacos Gastrointestinales/farmacología , Ácido Glicoquenodesoxicólico/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Tiazoles/farmacología
7.
Biol Cell ; 105(12): 561-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24117459

RESUMEN

BACKGROUND INFORMATION: Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. RESULTS: We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. CONCLUSIONS: This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions.


Asunto(s)
Cadmio/metabolismo , Uniones Comunicantes/metabolismo , Hepatocitos/metabolismo , Hígado/citología , Proteínas de Uniones Estrechas/metabolismo , Línea Celular , Células Cultivadas , Hepatocitos/citología , Humanos , Hígado/metabolismo , Uniones Estrechas/metabolismo , Andamios del Tejido
8.
Proc Natl Acad Sci U S A ; 108(18): 7290-5, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21464291

RESUMEN

Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.


Asunto(s)
Reacción de Fuga/fisiología , Marcha/fisiología , Paramecium/fisiología , Natación/fisiología , Fenómenos Biomecánicos , Calor , Rayos Láser
9.
PNAS Nexus ; 3(6): pgae229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933930

RESUMEN

The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.

10.
Biophys J ; 105(5): 1268-75, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24010670

RESUMEN

Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca(2+) handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca(2+) dynamics in this cell type. We found that in hepatocytes isolated from Hint2(-/-) mice, the frequency of Ca(2+) oscillations induced by 1 µM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca(2+) pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2(-/-) mice; we found that Hint2 accelerates Ca(2+) pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca(2+) in suspensions of mitochondria. This prediction was then confirmed experimentally.


Asunto(s)
Calcio/metabolismo , Hidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Hidrolasas/deficiencia , Potencial de la Membrana Mitocondrial , Ratones , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/deficiencia , Modelos Biológicos , Conformación Proteica
11.
Bioact Mater ; 18: 368-382, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35415309

RESUMEN

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

12.
Hepatology ; 52(2): 602-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20683958

RESUMEN

UNLABELLED: Liver regeneration is regulated by growth factors, cytokines, and other endocrine and metabolic factors. Calcium is important for cell division, but its role in liver regeneration is not known. The purpose of this study was to understand the effects of cytosolic calcium signals in liver growth after partial hepatectomy (PH). The gene encoding the calcium-binding protein parvalbumin (PV) targeted to the cytosol using a nuclear export sequence (NES), and using a discosoma red fluorescent protein (DsR) marker, was transfected into rat livers by injecting it, in recombinant adenovirus (Ad), into the portal vein. We performed two-thirds PH 4 days after Ad-PV-NES-DsR or Ad-DsR injection, and liver regeneration was analyzed. Calcium signals were analyzed with fura-2-acetoxymethyl ester in hepatocytes isolated from Ad-infected rats and in Ad-infected Hela cells. Also, isolated hepatocytes were infected with Ad-DsR or Ad-PV-NES-DsR and assayed for bromodeoxyuridine incorporation. Ad-PV-NES-DsR injection resulted in PV expression in the hepatocyte cytosol. Agonist-induced cytosolic calcium oscillations were attenuated in both PV-NES-expressing Hela cells and hepatocytes, as compared to DsR-expressing cells. Bromodeoxyuridine incorporation (S phase), phosphorylated histone 3 immunostaining (mitosis), and liver mass restoration after PH were all significantly delayed in PV-NES rats. Reduced cyclin expression and retinoblastoma protein phosphorylation confirmed this observation. PV-NES rats exhibited reduced c-fos induction and delayed extracellular signal-regulated kinase 1/2 phosphorylation after PH. Finally, primary PV-NES-expressing hepatocytes exhibited less proliferation and agonist-induced cyclic adenosine monophosphate responsive element binding and extracellular signal-regulated kinase 1/2 phosphorylation, as compared with control cells. CONCLUSION: Cytosolic calcium signals promote liver regeneration by enhancing progression of hepatocytes through the cell cycle.


Asunto(s)
Calcio/fisiología , Hepatocitos/fisiología , Regeneración Hepática/fisiología , Animales , Células Cultivadas , Citosol , Femenino , Parvalbúminas/biosíntesis , Ratas , Ratas Wistar
13.
Nat Cell Biol ; 5(8): 720-6, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12844145

RESUMEN

Shigella flexneri, the causative agent of bacillar dystentery, invades the colonic mucosa where it elicits an intense inflammatory reaction responsible for destruction of the epithelium. During cell invasion, contact with host cells activates the type-III secretion of the Shigella IpaB and IpaC proteins. IpaB and IpaC are inserted into host cell plasma membranes and trigger initial signals that result in actin polymerization, while allowing cytosolic access of other bacterial effectors that further reorganize the cytoskeleton. After internalization, Shigella moves intracellularly and forms protrusions that infect neighbouring cells, promoting bacterial dissemination across the epithelium. Here, we show that during cell invasion, Shigella induces transient peaks in intracellular calcium concentration that are dependent on a functional type-III secretory apparatus. In addition, Shigella invasion induces the opening of Connexin 26 (Cx26) hemichannels in an actin- and phospholipase-C-dependent manner, allowing release of ATP into the medium. The released ATP, in turn, increases bacterial invasion and spreading, as well as calcium signalling induced by Shigella. These results provide evidence that pathogen-induced opening of connexin channels promotes signalling events that favour bacterial invasion and dissemination.


Asunto(s)
Comunicación Celular/fisiología , Conexinas/metabolismo , Células Epiteliales/microbiología , Mucosa Intestinal/metabolismo , Shigella flexneri/fisiología , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Señalización del Calcio/fisiología , Conexina 26 , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología
14.
Med Sci (Paris) ; 27(2): 170-6, 2011 Feb.
Artículo en Francés | MEDLINE | ID: mdl-21382325

RESUMEN

In many cell types, specific and robust signalling relies on a high level of spatiotemporal organization of Ca(2+) dynamics. In response to external stimulation, Ca(2+) signals ranging from a small increase of a few tens of nanomolar concentrations at the mouth of an inositol 1, 4, 5-trisphosphate receptor to the periodic propagation of waves invading an organ or a tissue, can be observed. Here, we review our combined experimental and computational approach of Ca(2+) dynamics, which has been mainly carried out on liver hepatocytes. We focus in particular on the understanding of the relationship between elementary Ca(2+) increases, Ca(2+) oscillations and intra- or intercellular Ca(2+) waves. The physiological impact of such signalling on liver function is also discussed.


Asunto(s)
Señalización del Calcio , Células/metabolismo , Modelos Biológicos , Hígado/fisiología
15.
Genes (Basel) ; 12(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499031

RESUMEN

Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.


Asunto(s)
Calcio/metabolismo , Susceptibilidad a Enfermedades , Neoplasias/etiología , Neoplasias/metabolismo , Receptores sigma/metabolismo , Animales , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/terapia , Transducción de Señal , Receptor Sigma-1
16.
J Hepatol ; 52(1): 54-62, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19914731

RESUMEN

BACKGROUND & AIMS: Paracrine interactions are critical to liver physiology, particularly during regeneration, although physiological involvement of extracellular ATP, a crucial intercellular messenger, remains unclear. The physiological release of ATP into extracellular milieu and its impact on regeneration after partial hepatectomy were investigated in this study. METHODS: Hepatic ATP release after hepatectomy was examined in the rat and in human living donors for liver transplantation. Quinacrine was used for in vivo staining of ATP-enriched compartments in rat liver sections and isolated hepatocytes. Rats were treated with an antagonist for purinergic receptors (Phosphate-6-azo(benzene-2,4-disulfonic acid), PPADS), and liver regeneration after hepatectomy was analyzed. RESULTS: A robust and transient ATP release due to acute portal hyperpressure was observed immediately after hepatectomy in rats and humans. Clodronate liposomal pre-treatment partly inhibited ATP release in rats. Quinacrine-stained vesicles, co-labeled with a lysosomal marker in liver sections and isolated hepatocytes, were predominantly detected in periportal areas. These vesicles significantly disappeared after hepatectomy, in parallel with a decrease in liver ATP content. PPADS treatment inhibited hepatocyte cell cycle progression after hepatectomy, as revealed by a reduction in bromodeoxyuridine incorporation, phosphorylated histone 3 immunostaining, cyclin D1 and A expression and immediate early gene induction. CONCLUSION: Extracellular ATP is released immediately after hepatectomy from hepatocytes and Kupffer cells under mechanical stress and promotes liver regeneration in the rat. We suggest that in hepatocytes, ATP is released from a lysosomal compartment. Finally, observations made in living donors suggest that purinergic signalling could be critical for human liver regeneration.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hepatectomía/métodos , Regeneración Hepática/fisiología , Hígado/metabolismo , Hígado/cirugía , Adulto , Animales , Matriz Extracelular/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Macrófagos del Hígado/citología , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Trasplante de Hígado , Lisosomas/metabolismo , Masculino , Modelos Animales , Antagonistas del Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Estrés Mecánico , Donantes de Tejidos
17.
Sci Rep ; 10(1): 3924, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127570

RESUMEN

Mitochondria play an essential role in bioenergetics and cellular Ca[Formula: see text] handling. The mitochondrial permeability transition pore (mPTP) is a non-specific channel located in the inner mitochondrial membrane. Long-lasting openings of the pore allow the rapid passage of ions and large molecules, which can result in cell death. The mPTP also exhibits transient, low conductance openings that contribute to Ca[Formula: see text] homeostasis. Although many regulators of the pore have been identified, none of them uniquely governs the passage between the two operating modes, which thus probably relies on a still unidentified network of interactions. By developing a core computational model for mPTP opening under the control of mitochondrial voltage and Ca[Formula: see text], we uncovered the existence of a positive feedback loop leading to bistability. The characteristics of the two stable steady-states correspond to those of the two opening states. When inserted in a full model of Ca[Formula: see text] handling by mitochondria, our description of the pore reproduces observations in mitochondrial suspensions. Moreover, the model predicted the occurrence of hysteresis in the switching between the two modes, upon addition and removal of free Ca[Formula: see text] in the extra-mitochondrial medium. Stochastic simulations then confirmed that the pore can undergo transient openings resembling those observed in intact cells.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Biológicos , Calcio/metabolismo , Potencial de la Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Conformación Proteica
18.
FEBS J ; 287(1): 27-42, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647176

RESUMEN

The endoplasmic reticulum (ER) is a multifunctional organelle that constitutes the entry into the secretory pathway. The ER contributes to the maintenance of cellular calcium homeostasis, lipid synthesis and productive secretory, and transmembrane protein folding. Physiological, chemical, and pathological factors that compromise ER homeostasis lead to endoplasmic reticulum stress (ER stress). To cope with this situation, cells activate an adaptive signaling pathway termed the unfolded protein response (UPR) that aims at restoring ER homeostasis. The UPR is transduced through post-translational, translational, post-transcriptional, and transcriptional mechanisms initiated by three ER-resident sensors, inositol-requiring protein 1α, activating transcription factor 6α, and PRKR-like endoplasmic reticulum kinase. Determining the in and out of ER homeostasis control and UPR activation still represents a challenge for the community. Hence, standardized criteria and methodologies need to be proposed for monitoring ER homeostasis and ER stress in different model systems. Here, we summarize the pathways that are activated during ER stress and provide approaches aimed at assess ER homeostasis and stress in vitro and in vivo mammalian systems that can be used by researchers to plan and interpret experiments. We recommend the use of multiple assays to verify ER stress because no individual assay is guaranteed to be the most appropriate one.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Homeostasis , Respuesta de Proteína Desplegada , Animales , Humanos , Transducción de Señal
19.
Cancers (Basel) ; 12(8)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784704

RESUMEN

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.

20.
Chaos ; 19(3): 037112, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19792037

RESUMEN

In most cells, Ca(2+) increases in response to external stimulation are organized in the form of oscillations and waves that sometimes propagate from one cell to another. Numerous experimental and theoretical studies reveal that this spatiotemporal organization contains a non-negligible level of stochasticity. In this study, we extend the previous work based on a statistical analysis of experimental Ca(2+) traces in isolated, hormone-stimulated hepatocytes and on stochastic simulations of Ca(2+) oscillations based on the Gillespie's algorithm. Comparison of the coefficients of variation in the periods of experimental and simulated Ca(2+) spikes provides information about the clustering and the specific subtypes of the Ca(2+) channels. In hepatocytes coupled by gap junctions, the global perfusion with a hormone leads to successive Ca(2+) responses, giving the appearance of an intercellular wave. Statistical analysis of experimental Ca(2+) oscillations in coupled hepatocytes confirms that this coordinated Ca(2+) spiking corresponds to a phase wave but suggests the existence of an additional coupling mechanism.


Asunto(s)
Relojes Biológicos/fisiología , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Modelos Biológicos , Dinámicas no Lineales , Oscilometría/métodos , Algoritmos , Animales , Simulación por Computador , Humanos , Activación del Canal Iónico/fisiología , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA