Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941704

RESUMEN

Intranasal (i.n.) immunization is a promising vaccination route for infectious respiratory diseases such as influenza. Recombinant protein vaccines can overcome the safety concerns and long production phase of virus-based influenza vaccines. However, soluble protein vaccines are poorly immunogenic if administered by an i.n. route. Here, we report that polyethyleneimine-functionalized graphene oxide nanoparticles (GP nanoparticles) showed high antigen-loading capacities and superior immunoenhancing properties. Via a facile electrostatic adsorption approach, influenza hemagglutinin (HA) was incorporated into GP nanoparticles and maintained structural integrity and antigenicity. The resulting GP nanoparticles enhanced antigen internalization and promoted inflammatory cytokine production and JAWS II dendritic cell maturation. Compared with soluble HA, GP nanoparticle formulations induced significantly enhanced and cross-reactive immune responses at both systemic sites and mucosal surfaces in mice after i.n. immunization. In the absence of any additional adjuvant, the GP nanoparticle significantly boosted antigen-specific humoral and cellular immune responses, comparable to the acknowledged potent mucosal immunomodulator CpG. The robust immune responses conferred immune protection against challenges by homologous and heterologous viruses. Additionally, the solid self-adjuvant effect of GP nanoparticles may mask the role of CpG when coincorporated. In the absence of currently approved mucosal adjuvants, GP nanoparticles can be developed into potent i.n. influenza vaccines, providing broad protection. With versatility and flexibility, the GP nanoplatform can be easily adapted for constructing mucosal vaccines for different respiratory pathogens.


Asunto(s)
Reacciones Cruzadas/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Nanopartículas/química , Infecciones por Orthomyxoviridae/inmunología , Administración Intranasal , Animales , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Grafito/química , Grafito/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/inmunología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Polietileneimina/química , Vacunación/métodos
2.
Nat Immunol ; 11(12): 1127-35, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20972432

RESUMEN

Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.


Asunto(s)
Haptenos/inmunología , Memoria Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Receptores CXCR/inmunología , Virus/inmunología , Inmunidad Adaptativa/inmunología , Traslado Adoptivo , Animales , Separación Celular , Quimiotaxis de Leucocito/inmunología , Citotoxicidad Inmunológica/inmunología , Citometría de Flujo , Células Asesinas Naturales/metabolismo , Hígado/citología , Hígado/inmunología , Subgrupos Linfocitarios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CXCR/metabolismo , Receptores CXCR6 , Virosis/inmunología
3.
Proc Natl Acad Sci U S A ; 115(33): E7758-E7767, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30065113

RESUMEN

Influenza is a persistent threat to public health. Here we report that double-layered peptide nanoparticles induced robust specific immunity and protected mice against heterosubtypic influenza A virus challenges. We fabricated the nanoparticles by desolvating a composite peptide of tandem copies of nucleoprotein epitopes into nanoparticles as cores and cross-linking another composite peptide of four tandem copies of influenza matrix protein 2 ectodomain epitopes to the core surfaces as a coating. Delivering the nanoparticles via dissolvable microneedle patch-based skin vaccination further enhanced the induced immunity. These peptide-only, layered nanoparticles demonstrated a strong antigen depot effect and migrated into spleens and draining (inguinal) lymph nodes for an extended period compared with soluble antigens. This increased antigen-presentation time correlated with the stronger immune responses in the nanoparticle-immunized group. The protection conferred by nanoparticle immunization was transferable by passive immune serum transfusion and depended partially on a functional IgG receptor FcγRIV. Using a conditional cell depletion, we found that CD8+ T cells were involved in the protection. The immunological potency and stability of the layered peptide nanoparticles indicate applications for other peptide-based vaccines and peptide drug delivery.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Nanopartículas , Infecciones por Orthomyxoviridae/inmunología , Péptidos/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Femenino , Inmunización , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control , Receptores de IgG/inmunología
4.
PLoS Pathog ; 13(11): e1006757, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29176767

RESUMEN

Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to "tolerate" the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers' risk following influenza virus infection have not been fully elucidated. We used pregnant BALB/c mice during mid- to late gestation to determine the impact of a sub-lethal infection with A/Brisbane/59/07 H1N1 seasonal influenza virus on completion of gestation. Maternal and fetal health status was closely monitored and compared to infected non-pregnant mice. Severity of infection during pregnancy was correlated with premature rupture of amniotic membranes (PROM), fetal survival and body weight at birth, lung viral load and degree of systemic and tissue inflammation mediated by innate and adaptive immune responses. Here we report that influenza virus infection resulted in dysregulation of inflammatory responses that led to pre-term labor, impairment of fetal growth, increased fetal mortality and maternal morbidity. We observed significant compartment-specific immune responses correlated with changes in hormonal synthesis and regulation. Dysregulation of progesterone, COX-2, PGE2 and PGF2α expression in infected pregnant mice was accompanied by significant remodeling of placental architecture and upregulation of MMP-9 early after infection. Collectively these findings demonstrate the potential of a seasonal influenza virus to initiate a powerful pro-abortive mechanism with adverse outcomes in fetal health.


Asunto(s)
Hormonas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/fisiopatología , Complicaciones del Embarazo/fisiopatología , Animales , Dinoprostona/metabolismo , Femenino , Humanos , Gripe Humana/metabolismo , Gripe Humana/mortalidad , Gripe Humana/virología , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , Placenta/metabolismo , Placenta/virología , Embarazo , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/mortalidad , Complicaciones del Embarazo/virología , Resultado del Embarazo , Progesterona/metabolismo
5.
J Infect Dis ; 218(suppl_5): S545-S552, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29893888

RESUMEN

In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Vacunación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/biosíntesis , Formación de Anticuerpos , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
6.
Lancet ; 390(10095): 649-658, 2017 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-28666680

RESUMEN

BACKGROUND: Microneedle patches provide an alternative to conventional needle-and-syringe immunisation, and potentially offer improved immunogenicity, simplicity, cost-effectiveness, acceptability, and safety. We describe safety, immunogenicity, and acceptability of the first-in-man study on single, dissolvable microneedle patch vaccination against influenza. METHODS: The TIV-MNP 2015 study was a randomised, partly blinded, placebo-controlled, phase 1, clinical trial at Emory University that enrolled non-pregnant, immunocompetent adults from Atlanta, GA, USA, who were aged 18-49 years, naive to the 2014-15 influenza vaccine, and did not have any significant dermatological disorders. Participants were randomly assigned (1:1:1:1) to four groups and received a single dose of inactivated influenza vaccine (fluvirin: 18 µg of haemagglutinin per H1N1 vaccine strain, 17 µg of haemagglutinin per H3N2 vaccine strain, and 15 µg of haemagglutinin per B vaccine strain) (1) by microneedle patch or (2) by intramuscular injection, or received (3) placebo by microneedle patch, all administered by an unmasked health-care worker; or received a single dose of (4) inactivated influenza vaccine by microneedle patch self-administered by study participants. A research pharmacist prepared the randomisation code using a computer-generated randomisation schedule with a block size of 4. Because of the nature of the study, participants were not masked to the type of vaccination method (ie, microneedle patch vs intramuscular injection). Primary safety outcome measures are the incidence of study product-related serious adverse events within 180 days, grade 3 solicited or unsolicited adverse events within 28 days, and solicited injection site and systemic reactogenicity on the day of study product administration through 7 days after administration, and secondary safety outcomes are new-onset chronic illnesses within 180 days and unsolicited adverse events within 28 days, all analysed by intention to treat. Secondary immunogenicity outcomes are antibody titres at day 28 and percentages of seroconversion and seroprotection, all determined by haemagglutination inhibition antibody assay. The trial is completed and registered with ClinicalTrials.gov, number NCT02438423. FINDINGS: Between June 23, 2015, and Sept 25, 2015, 100 participants were enrolled and randomly assigned to a group. There were no treatment-related serious adverse events, no treatment-related unsolicited grade 3 or higher adverse events, and no new-onset chronic illnesses. Among vaccinated groups (vaccine via health-care worker administered microneedle patch or intramuscular injection, or self-administered microneedle patch), overall incidence of solicited adverse events (n=89 vs n=73 vs n=73) and unsolicited adverse events (n=18 vs n=12 vs n=14) were similar. Reactogenicity was mild, transient, and most commonly reported as tenderness (15 [60%] of 25 participants [95% CI 39-79]) and pain (11 [44%] of 25 [24-65]) after intramuscular injection; and as tenderness (33 [66%] of 50 [51-79]), erythema (20 [40%] of 50 [26-55]), and pruritus (41 [82%] of 50 [69-91]) after vaccination by microneedle patch application. The geometric mean titres were similar at day 28 between the microneedle patch administered by a health-care worker versus the intramuscular route for the H1N1 strain (1197 [95% CI 855-1675] vs 997 [703-1415]; p=0·5), the H3N2 strain (287 [192-430] vs 223 [160-312]; p=0·4), and the B strain (126 [86-184] vs 94 [73-122]; p=0·06). Similar geometric mean titres were reported in participants who self-administered the microneedle patch (all p>0·05). The seroconversion percentages were significantly higher at day 28 after microneedle patch vaccination compared with placebo (all p<0·0001) and were similar to intramuscular injection (all p>0·01). INTERPRETATION: Use of dissolvable microneedle patches for influenza vaccination was well tolerated and generated robust antibody responses. FUNDING: National Institutes of Health.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Adolescente , Adulto , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Persona de Mediana Edad , Aceptación de la Atención de Salud , Seguridad , Seroconversión , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Adulto Joven
7.
Nanomedicine ; 13(1): 253-262, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27622321

RESUMEN

Recurring influenza viruses pose an annual threat to public health. A time-saving, cost-effective and egg-independent influenza vaccine approach is important particularly when responding to an emerging pandemic. We fabricated coated, two-layer protein nanoclusters from recombinant trimeric hemagglutinin from an avian-origin H7N9 influenza A virus as an approach for vaccine development in response to an emerging pandemic. Assessment of the virus-specific immune responses and protective efficacy in mice immunized with the nanoclusters demonstrated that the vaccine candidates were highly immunogenic, able to induce protective immunity and long-lasting humoral antibody responses to this virus without the use of adjuvants. Because the advantages of the highly immunogenic coated nanoclusters also include rapid productions in an egg-independent system, this approach has great potential for influenza vaccine production not only in response to an emerging pandemic, but also as a replacement for conventional seasonal influenza vaccines.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Nanopartículas/química , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunidad Humoral , Subtipo H7N9 del Virus de la Influenza A , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Proteínas Recombinantes/inmunología
8.
J Virol ; 89(2): 1205-17, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392212

RESUMEN

UNLABELLED: The Ebola virus (EBOV) surface glycoprotein (GP1,2) mediates host cell attachment and fusion and is the primary target for host neutralizing antibodies. Expression of GP1,2 at high levels disrupts normal cell physiology, and EBOV uses an RNA-editing mechanism to regulate expression of the GP gene. In this study, we demonstrate that high levels of GP1,2 expression impair production and release of EBOV virus-like particles (VLPs) as well as infectivity of GP1,2-pseudotyped viruses. We further show that this effect is mediated through two mechanisms. First, high levels of GP1,2 expression reduce synthesis of other proteins needed for virus assembly. Second, viruses containing high levels of GP1,2 are intrinsically less infectious, possibly due to impaired receptor binding or endosomal processing. Importantly, proteolysis can rescue the infectivity of high-GP1,2-containing viruses. Taken together, our findings indicate that GP1,2 expression levels have a profound effect on factors that contribute to virus fitness and that RNA editing may be an important mechanism employed by EBOV to regulate GP1,2 expression in order to optimize virus production and infectivity. IMPORTANCE: The Ebola virus (EBOV), as well as other members of the Filoviridae family, causes severe hemorrhagic fever that is highly lethal, with up to 90% mortality. The EBOV surface glycoprotein (GP1,2) plays important roles in virus infection and pathogenesis, and its expression is tightly regulated by an RNA-editing mechanism during virus replication. Our study demonstrates that the level of GP1,2 expression profoundly affects virus particle production and release and uncovers a new mechanism by which Ebola virus infectivity is regulated by the level of GP1,2 expression. These findings extend our understanding of EBOV infection and replication in adaptation of host environments, which will aid the development of countermeasures against EBOV infection.


Asunto(s)
Ebolavirus/fisiología , Regulación Viral de la Expresión Génica , Glicoproteínas de Membrana/biosíntesis , Internalización del Virus , Liberación del Virus , Replicación Viral , Línea Celular , Humanos , Edición de ARN
9.
Curr Top Microbiol Immunol ; 386: 343-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25038939

RESUMEN

Problems with existing influenza vaccines include the strain specificity of the immune response, resulting in the need for frequent reformulation in response to viral antigenic drift. Even in years when the same influenza strains are prevalent, the duration of immunity is limited, and results in the need for annual revaccination. The immunogenicity of the present split or subunit vaccines is also lower than that observed with whole inactivated virus, and the vaccines are not very effective in high risk groups such as the young or the elderly. Vaccine coverage is incomplete, due in part to concerns about the use of hypodermic needles for delivery. Alternative approaches for vaccination are being developed which address many of these concerns. Here we review new approaches which focus on skin immunization, including the development of needle-free delivery systems which use stable dry formulations and induce stronger and longer-lasting immune responses.


Asunto(s)
Vacunas contra la Influenza/inmunología , Piel/inmunología , Animales , Humanos , Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas de ADN/inmunología
10.
Pharm Res ; 33(4): 868-78, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26620313

RESUMEN

PURPOSE: This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. METHODS: Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. RESULTS: While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1-2 weeks outside of refrigeration, vaccine in microneedle patches lost 40-50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. CONCLUSIONS: These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures.


Asunto(s)
Sistemas de Liberación de Medicamentos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Agujas , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Productos Inactivados/administración & dosificación , Animales , Almacenaje de Medicamentos , Calor , Humanos , Inmunización , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Ratones , Infecciones por Orthomyxoviridae/inmunología , Parche Transdérmico , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico
11.
Arch Virol ; 161(11): 3011-8, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27488878

RESUMEN

We defined the effects of the cytoplasmic domain (CT) of the Env glycoprotein on co-receptor usage of HIV-1 by reciprocal exchanges of regions containing V3-V5 loops between CD4-dependent and CD4-independent isolates. Primary HIV-1 isolate Env clones CD8 CXCR4-tropic 92UG046 CT84 with an 84-aa truncated CT domain, CD4 CXCR4-tropic 92UG046, and CD4 CCR5-tropic SF162 with full-length (FL) CT domains were used for comparison. The parental 92UG046 Env with CT84 was not fusogenic, but a chimeric SF162 V3-V5-CT84 with an 84-aa truncated CT domain, which demonstrated a switched co-receptor specificity, exhibited syncytium-formation activity with 3T3T4X4 cells. The wild-type (WT) SF162 Env with CT84 or full-length CT was fusogenic in 3T3T4R5 cells. By exchange of V3-V5 loops, we were able to alter WT SF162 to switch its co-receptor preference, which was not dependent on CT domain length. These results provide evidence that CT domains can induce conformational changes in functional regions of gp120 and determine receptor tropism but do not modulate HIV-1 co-receptor specificity.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Receptores del VIH/metabolismo , Tropismo Viral , Acoplamiento Viral , Sitios de Unión , Línea Celular , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Infect Dis ; 212 Suppl 2: S398-403, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25877553

RESUMEN

In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Isoformas de Proteínas/inmunología , Vacunas de ADN/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Femenino , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunización Secundaria/métodos , Ratones , Ratones Endogámicos BALB C , Vacunación/métodos
13.
Mol Ther ; 22(7): 1364-1374, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24590045

RESUMEN

Current influenza vaccines do not provide good protection against antigenically different influenza A viruses. As an approach to overcome strain specificity of protection, this study demonstrates significantly improved long-term cross protection by supplementing split vaccines with a conserved molecular target, a repeat of the influenza M2 ectodomain (M2e) expressed on virus-like particles (M2e5x VLPs) in a membrane-anchored form. Intramuscular immunization with H1N1 split vaccine (A/California/07/2009) supplemented with M2e5x VLPs induced M2e-specific humoral and cellular immune responses, and shaped the host responses to the vaccine in the direction of T-helper type 1 responses inducing dominant IgG2a isotype antibodies as well as interferon-γ (IFN-γ) producing cells in systemic and mucosal sites. Upon lethal challenge, M2e5x VLP-supplemented vaccination lowered lung viral loads and induced long-term cross protection against H3N2 or H5N1 subtype influenza viruses over 12 months. M2e antibodies, CD4 T cells, and CD8 T cells were found to contribute to improving heterosubtypic cross protection. In addition, improved cross protection by supplemented vaccination with M2e5x VLPs was mediated via Fc receptors. The results support evidence that supplementation with M2e5x VLPs is a promising approach for overcoming the limitation of strain-specific protection by current influenza vaccination.


Asunto(s)
Protección Cruzada/inmunología , Vacunas contra la Influenza/uso terapéutico , Animales , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control
14.
Nanomedicine ; 11(5): 1097-107, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25752855

RESUMEN

Recombinant virus-like nanoparticles (VLPs) are a promising nanoparticle platform to develop safe vaccines for many viruses. Herein, we describe a novel and rapid protein transfer process to enhance the potency of enveloped VLPs by decorating influenza VLPs with exogenously added glycosylphosphatidylinositol-anchored immunostimulatory molecules (GPI-ISMs). With protein transfer, the level of GPI-ISM incorporation onto VLPs is controllable by varying incubation time and concentration of GPI-ISMs added. ISM incorporation was dependent upon the presence of a GPI-anchor and incorporated proteins were stable and functional for at least 4weeks when stored at 4°C. Vaccinating mice with GPI-granulocyte macrophage colony-stimulating factor (GM-CSF)-incorporated-VLPs induced stronger antibody responses and better protection against a heterologous influenza virus challenge than unmodified VLPs. Thus, VLPs can be enriched with ISMs by protein transfer to increase the potency and breadth of the immune response, which has implications in developing effective nanoparticle-based vaccines against a broad spectrum of enveloped viruses. FROM THE CLINICAL EDITOR: The inherent problem with current influenza vaccines is that they do not generate effective cross-protection against heterologous viral strains. In this article, the authors described the development of virus-like nanoparticles (VLPs) as influenza vaccines with enhanced efficacy for cross-protection, due to an easy protein transfer modification process.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Glicosilfosfatidilinositoles/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Orthomyxoviridae/inmunología , Virión/inmunología , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Antivirales/inmunología , Células CHO , Cricetulus , Femenino , Glicosilfosfatidilinositoles/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Humanos , Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/química , Ratones Endogámicos BALB C , Nanopartículas/química , Orthomyxoviridae/química , Infecciones por Orthomyxoviridae/inmunología , Vacunación , Virión/química
15.
Immunology ; 142(4): 624-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24645831

RESUMEN

The generation of memory B cells by vaccination plays a critical role in maintaining antigen-specific antibodies and producing antibody responses upon re-exposure to a pathogen. B-cell populations contributing to antibody production and protection by vaccination remain poorly defined. We used influenza virus-like particle (VLP) vaccine in a transgenic mouse model that would identify germinal centre-derived memory B cells with the expression of yellow fluorescent protein (YFP(+) cells). Immunization with influenza VLP vaccine did not induce significant increases in YFP(+) cells although vaccine antigen-specific antibodies in sera were found to confer protection against a lethal dose of influenza A virus (A/PR8). In addition, CD43(+)  B220(-) populations with low YFP(+) cells mainly contributed to the production of vaccine antigen-specific IgG isotype-switched antibodies whereas CD43(-)  B220(+) populations with high YFP(+) cells were able to produce vaccine antigen-specific IgM antibodies. Challenge infection of immunized transgenic mice with live influenza A virus resulted in significant increases in YFP(+) cells in the B220(-) populations of spleen and bone marrow cells. These results suggest that CD43(+)  B220(-) B cells generated by vaccination are important for producing influenza vaccine antigen-specific antibodies and conferring protection.


Asunto(s)
Antígenos Virales/inmunología , Subgrupos de Linfocitos B/inmunología , Memoria Inmunológica , Vacunas contra la Influenza/inmunología , Animales , Antígenos Virales/farmacología , Subgrupos de Linfocitos B/patología , Vacunas contra la Influenza/farmacología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Leucosialina/genética , Leucosialina/inmunología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/prevención & control
16.
PLoS Pathog ; 8(12): e1003065, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271969

RESUMEN

In addition to its surface glycoprotein (GP(1,2)), Ebola virus (EBOV) directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP(1,2) and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP(12) antibodies, but only from mice that have been immunized by sGP. We term this phenomenon "antigenic subversion", and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP(1,2), thereby allowing it to absorb anti-GP(1,2) antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host's anti-GP(1,2) response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design.


Asunto(s)
Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Evasión Inmune/inmunología , Animales , Reacciones Cruzadas/efectos de los fármacos , Reacciones Cruzadas/genética , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/farmacología , Ebolavirus/genética , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Evasión Inmune/genética , Inmunización , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas de ADN/farmacología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
18.
Mol Ther ; 21(2): 485-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23247101

RESUMEN

The extracellular domain of M2 (M2e), a small ion channel membrane protein, is well conserved among different human influenza A virus strains. To improve the protective efficacy of M2e vaccines, we genetically engineered a tandem repeat of M2e epitope sequences (M2e5x) of human, swine, and avian origin influenza A viruses, which was expressed in a membrane-anchored form and incorporated in virus-like particles (VLPs). The M2e5x protein with the transmembrane domain of hemagglutinin (HA) was effectively incorporated into VLPs at a several 100-fold higher level than that on influenza virions. Intramuscular immunization with M2e5x VLP vaccines was highly effective in inducing M2e-specific antibodies reactive to different influenza viruses, mucosal and systemic immune responses, and cross-protection regardless of influenza virus subtypes in the absence of adjuvant. Importantly, immune sera were found to be sufficient for conferring protection in naive mice, which was long-lived and cross-protective. Thus, molecular designing and presenting M2e immunogens on VLPs provide a promising platform for developing universal influenza vaccines without using adjuvants.


Asunto(s)
Protección Cruzada , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Proteínas de la Matriz Viral/genética , Virión/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Línea Celular , Reacciones Cruzadas , Modelos Animales de Enfermedad , Femenino , Humanos , Sueros Inmunes/genética , Sueros Inmunes/inmunología , Inmunoglobulina G/genética , Vacunas contra la Influenza/farmacología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente , Spodoptera/genética , Secuencias Repetidas en Tándem , Proteínas de la Matriz Viral/inmunología , Virión/química
19.
Nanomedicine ; 10(2): 473-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23988715

RESUMEN

Influenza vaccines with broad cross-protection are urgently needed. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) can be a promising candidate if its low immunogenicity was overcome. In this study, we generated protein nanoclusters self-assembled from conformation-stabilized M2e tetramers (tM2e) to improve its immunogenicity. The resulting nanoclusters showed an average hydrodynamic diameter of 227 nm. Vaccination with the nanoclusters by an intranasal route elicited high levels of serum antigen-specific IgG in mice (approximately 100-fold higher than that obtained with soluble tM2e), as well as antigen-specific T cell and mucosal antibody responses. The immunity conferred complete protection against lethal challenge with homo- as well as heterosubtypic viruses. These results demonstrate that nanoclusters assembled from conformation-stabilized M2e are promising as a potential universal influenza A vaccine. Self-assembly into nanoclusters represents a novel approach for increasing the immunogenicity of vaccine antigens. FROM THE CLINICAL EDITOR: In order to develop more effective influenza vaccination, the highly conserved ectodomain of M2e could be a promising candidate. Unfortunately, it is a weak antigen for vaccination purposes. In this study, self-assembled protein nanoclusters of tM2e were generated and tested. The nanoclusters demonstrated superior vaccination properties, with complete protection against lethal challenge in the studied rodent model, raising hope for the introduction of similar vaccines to challenge human influenza outbreaks.


Asunto(s)
Vacunas contra la Influenza/inmunología , Nanopartículas , Infecciones por Orthomyxoviridae/prevención & control , Proteínas de la Matriz Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Antígenos/inmunología , Antígenos Virales , Islas de CpG , Inmunoglobulina G/sangre , Pulmón/metabolismo , Ratones , Datos de Secuencia Molecular , Nanotecnología , Péptidos , Proteínas Recombinantes/inmunología
20.
Proc Natl Acad Sci U S A ; 108(2): 757-61, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187388

RESUMEN

Development of an influenza vaccine that provides broadly cross-protective immunity has been a scientific challenge for more than half a century. This study presents an approach to overcome strain-specific protection by supplementing conventional vaccines with virus-like particles (VLPs) containing the conserved M2 protein (M2 VLPs) in the absence of adjuvants. We demonstrate that an inactivated influenza vaccine supplemented with M2 VLPs prevents disease symptoms without showing weight loss and confers complete cross protection against lethal challenge with heterologous influenza A viruses including the 2009 H1N1 pandemic virus as well as heterosubtypic H3N2 and H5N1 influenza viruses. Cross-protective immunity was long-lived, for more than 7 mo. Immune sera from mice immunized with M2 VLP supplemented vaccine transferred cross protection to naive mice. Dendritic and macrophage cells were found to be important for this cross protection mediated by immune sera. The results provide evidence that supplementation of seasonal influenza vaccines with M2 VLPs is a promising approach for overcoming the limitation of strain-specific protection by current vaccines and developing a universal influenza A vaccine.


Asunto(s)
Virus de la Influenza A/metabolismo , Gripe Humana/prevención & control , Gripe Humana/virología , Vacunación , Proteínas de la Matriz Viral/fisiología , Animales , Ácido Clodrónico/farmacología , Protección Cruzada , Células Dendríticas/virología , Femenino , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos BALB C , Proteínas de la Matriz Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA