Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 123(Pt 14): 2402-12, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20571049

RESUMEN

Cells require ribonucleotide reductase (RNR) activity for DNA replication. In bacteria, electrons can flow from NADPH to RNR by either a thioredoxin-reductase- or a glutathione-reductase-dependent route. Yeast and plants artificially lacking thioredoxin reductases exhibit a slow-growth phenotype, suggesting glutathione-reductase-dependent routes are poor at supporting DNA replication in these organisms. We have studied proliferation of thioredoxin-reductase-1 (Txnrd1)-deficient hepatocytes in mice. During development and regeneration, normal mice and mice having Txnrd1-deficient hepatocytes exhibited similar liver growth rates. Proportions of hepatocytes that immunostained for PCNA, phosphohistone H3 or incorporated BrdU were also similar, indicating livers of either genotype had similar levels of proliferative, S and M phase hepatocytes, respectively. Replication was blocked by hydroxyurea, confirming that RNR activity was required by Txnrd1-deficient hepatocytes. Regenerative thymidine incorporation was similar in normal and Txnrd1-deficient livers, further indicating that DNA synthesis was unaffected. Using genetic chimeras in which a fluorescently marked subset of hepatocytes was Txnrd1-deficient while others were not, we found that the multigenerational contributions of both hepatocyte types to development and to liver regeneration were indistinguishable. We conclude that, in mouse hepatocytes, a Txnrd1-independent route for the supply of electrons to RNR can fully support DNA replication and normal proliferative growth.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Hepatectomía , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hidroxiurea/farmacología , Hígado/embriología , Hígado/patología , Hígado/cirugía , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL , Organogénesis/genética , Receptores Nucleares Huérfanos/metabolismo , Eliminación de Secuencia/genética , Tiorredoxina Reductasa 1/genética
2.
Hepatology ; 54(2): 655-63, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538442

RESUMEN

UNLABELLED: The contributions that de novo differentiation of new hepatocyte lineages makes to normal liver physiology are unknown. In this study, a system that uniquely marks cells during a finite period following primary activation of a serum albumin gene promoter/enhancer-driven Cre recombinase (albCre) transgene was used to investigate birthrates of new hepatocyte lineages from albumin (Alb)-naive precursors in mice. Elapsed time was measured with a two-color fluorescent marker gene that converts from expressing tandem dimer Tomato (tdT; a red fluorescent protein) to expressing green fluorescent protein (GFP) following primary exposure to Cre. The accumulation of GFP and the decay of tdT each contributed to a regular fluorescence transition, which was calibrated in vivo. In normal adults, this system revealed that a steady-state level of 0.076% of all hepatocytes had differentiated within the previous 4 days from albCre-naive cell lineages. In comparison with resting adult livers, the relative abundance of these newborn hepatocytes was elevated 3.7-fold in the growing livers of juveniles and 8.6-fold during liver regeneration after partial hepatectomy in adults. CONCLUSION: Newborn hepatocyte lineages arising from Alb-naive cells contribute to liver maintenance under normal conditions. Hepatocyte lineage birthrates can vary in response to the liver's physiological status.


Asunto(s)
Hepatocitos , Regeneración Hepática , Hígado/crecimiento & desarrollo , Animales , Línea Celular , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA