Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(6): e0063523, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37272812

RESUMEN

Stenotrophomonas maltophilia is an environmental bacterium as well as an emerging opportunistic multidrug-resistant pathogen. They use the endogenous diffusible signal factor (DSF) quorum sensing (QS) system to coordinate population behavior and regulate virulence processes but can also respond to exogenous N-acyl-homoserine lactone (AHL) signals produced by neighboring bacteria. The effect of these QS signals on the global gene expression of this species remains, however, unknown. Whole-transcriptome sequencing analyses were performed for exponential cultures of S. maltophilia K279a treated with exogenous DSF or AHLs. Addition of DSF and AHLs signals resulted in changes in expression of at least 2-fold for 28 and 82 genes, respectively. Interestingly, 22 of these genes were found upregulated by both QS signals, 14 of which were shown to also be induced during the stationary phase. Gene functions regulated by all conditions included lipid and amino acid metabolism, stress response and signal transduction, nitrogen and iron metabolism, and adaptation to microoxic conditions. Among the common top upregulated QS core genes, a putative TetR-like regulator (locus tag SMLT2053) was selected for functional characterization. This regulator controls its own ß-oxidation operon (Smlt2053-Smlt2051), and it is found to sense long-chain fatty acids (FAs), including the QS signal DSF. Gene knockout experiments reveal that operon Smlt2053-Smlt2051 is involved in biofilm formation. Overall, our findings provide clues on the effect that QS signals have in S. maltophilia QS-related phenotypes and the transition from the exponential to the stationary phase and bacterial fitness under high-density growth. IMPORTANCE The quorum sensing system in Stenotrophomonas maltophilia, in addition to coordinating the bacterial population, controls virulence-associated phenotypes, such as biofilm formation, motility, protease production, and antibiotic resistance mechanisms. Biofilm formation is frequently associated with the persistence and chronic nature of nosocomial infections. In addition, biofilms exhibit high resistance to antibiotics, making treatment of these infections extremely difficult. The importance of studying the metabolic and regulatory systems controlled by quorum sensing autoinducers will make it possible to discover new targets to control pathogenicity mechanisms in S. maltophilia.


Asunto(s)
Percepción de Quorum , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Biopelículas , Virulencia , Acil-Butirolactonas/metabolismo , Ácidos Grasos/metabolismo
2.
Appl Environ Microbiol ; 89(6): e0031723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37195181

RESUMEN

Fluorescently labeled bacterial cells have become indispensable for many aspects of microbiological research, including studies on biofilm formation as an important virulence factor of various opportunistic bacteria of environmental origin such as Stenotrophomonas maltophilia. Using a Tn7-based genomic integration system, we report the construction of improved mini-Tn7 delivery plasmids for labeling of S. maltophilia with sfGFP, mCherry, tdTomato and mKate2 by expressing their codon-optimized genes from a strong, constitutive promoter and an optimized ribosomal binding site. Transposition of the mini-Tn7 transposons into single neutral sites located on average 25 nucleotides downstream of the 3'-end of the conserved glmS gene of different S. maltophilia wild-type strains did not have any adverse effects on the fitness of their fluorescently labeled derivatives. This was demonstrated by comparative analyses of growth, resistance profiles against 18 antibiotics of different classes, the ability to form biofilms on abiotic and biotic surfaces, also independent of the fluorescent protein expressed, and virulence in Galleria mellonella. It is also shown that the mini-Tn7 elements remained stably integrated in the genome of S. maltophilia over a prolonged period of time in the absence of antibiotic selection pressure. Overall, we provide evidence that the new improved mini-Tn7 delivery plasmids are valuable tools for generating fluorescently labeled S. maltophilia strains that are indistinguishable in their properties from their parental wild-type strains. IMPORTANCE The bacterium S. maltophilia is an important opportunistic nosocomial pathogen that can cause bacteremia and pneumonia in immunocompromised patients with a high rate of mortality. It is now considered as a clinically relevant and notorious pathogen in cystic fibrosis patients but has also been isolated from lung specimen of healthy donors. The high intrinsic resistance to a wide range of antibiotics complicates treatment and most likely contributes to the increasing incidence of S. maltophilia infections worldwide. One important virulence-related trait of S. maltophilia is the ability to form biofilms on any surface, which may result in the development of increased transient phenotypic resistance to antimicrobials. The significance of our work is to provide a mini-Tn7-based labeling system for S. maltophilia to study the mechanisms of biofilm formation or host-pathogen interactions with live bacteria under non-destructive conditions.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Plásmidos/genética , Antibacterianos/metabolismo , Virulencia , Factores de Virulencia/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología
3.
J Chem Inf Model ; 62(22): 5738-5745, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36264888

RESUMEN

It has been recently suggested that diametral (so-called quality) similarity thresholds are superior to radial ones for the clustering of molecular three-dimensional structures (González-Alemán et al., 2020). The argument has been made for two clustering algorithms available in various software packages for the analysis of molecular structures from ensembles generated by computer simulations, attributed to Daura et al. (1999) (radial threshold) and Heyer et al. (1999) (diametral threshold). Here, we compare these two algorithms using the root-mean-squared difference (rmsd) between the Cartesian coordinates of selected atoms as pairwise similarity metric. We discuss formally the relation between these two methods and illustrate their behavior with two examples, a set of points in two dimensions and the coordinates of the tau polypeptide along a trajectory extracted from a replica-exchange molecular-dynamics simulation (Shea and Levine, 2016). We show that the two methods produce equally sized clusters as long as adequate choices are made for the respective thresholds. The real issue is not whether the threshold is radial or diametral but how to choose in either case a threshold value that is physically meaningful. We will argue that, when clustering molecular structures with the rmsd as a metric, the simplest best guess for a threshold is actually radial in nature.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Molecular , Análisis por Conglomerados
4.
BMC Bioinformatics ; 20(1): 24, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642249

RESUMEN

BACKGROUND: Around 1% of human proteins are predicted to contain a disordered and low complexity prion-like domain (PrLD). Mutations in PrLDs have been shown promote a transition towards an aggregation-prone state in several diseases. RESULTS: Recently, we have shown that an algorithm that considers the effects of mutations on PrLDs composition, as well as on localized amyloid propensity can predict the impact of these amino acid changes on protein intracellular aggregation. In this application note, we implement this concept into the AMYCO web server, a refined algorithm that forecasts the influence of amino acid changes in prion-like proteins aggregation propensity better than state-of-the-art predictors. CONCLUSIONS: The AMYCO web server allows for a fast and automated evaluation of the effect of mutations on the aggregation properties of prion-like proteins. This might uncover novel disease-linked amino acid changes in the sequences of human prion-like proteins. Additionally, it can find application in the in silico design of synthetic prion-like proteins with tuned aggregation propensities for different purposes. AMYCO does not require previous registration and is freely available to all users at: http://bioinf.uab.cat/amyco/ .


Asunto(s)
Algoritmos , Biología Computacional/métodos , Mutación , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Humanos , Proteínas Priónicas/genética , Dominios Proteicos
5.
Nucleic Acids Res ; 43(W1): W331-7, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25977297

RESUMEN

Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/.


Asunto(s)
Amiloide/química , Asparagina/análisis , Glutamina/análisis , Priones/química , Programas Informáticos , Proteínas Fúngicas/química , Internet , Estructura Terciaria de Proteína , Proteómica/métodos , Análisis de Secuencia de Proteína
6.
Nanomedicine ; 10(3): 535-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24269989

RESUMEN

By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. FROM THE CLINICAL EDITOR: Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , Nanopartículas/química , Proteínas/química , Secuencia de Aminoácidos , ADN/genética , Terapia Genética , Células HeLa , Histidina/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química
7.
Front Cell Infect Microbiol ; 14: 1346565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469346

RESUMEN

Stenotrophomonas maltophilia are ubiquitous Gram-negative bacteria found in both natural and clinical environments. It is a remarkably adaptable species capable of thriving in various environments, thanks to the plasticity of its genome and a diverse array of genes that encode a wide range of functions. Among these functions, one notable trait is its remarkable ability to resist various antimicrobial agents, primarily through mechanisms that regulate the diffusion across cell membranes. We have investigated the Mla ABC transport system of S. maltophilia, which in other Gram-negative bacteria is known to transport phospholipids across the periplasm and is involved in maintaining outer membrane homeostasis. First, we structurally and functionally characterized the periplasmic substrate-binding protein MlaC, which determines the specificity of this system. The predicted structure of the S. maltophilia MlaC protein revealed a hydrophobic cavity of sufficient size to accommodate the phospholipids commonly found in this species. Moreover, recombinant MlaC produced heterologously demonstrated the ability to bind phospholipids. Gene knockout experiments in S. maltophilia K279a revealed that the Mla system is involved in baseline resistance to antimicrobial and antibiofilm agents, especially those with divalent-cation chelating activity. Co-culture experiments with Pseudomonas aeruginosa also showed a significant contribution of this system to the cooperation between both species in the formation of polymicrobial biofilms. As suggested for other Gram-negative pathogenic microorganisms, this system emerges as an appealing target for potential combined antimicrobial therapies.


Asunto(s)
Antiinfecciosos , Infecciones por Bacterias Gramnegativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/metabolismo , Bacterias Gramnegativas , Biopelículas , Membrana Celular , Antiinfecciosos/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología
8.
Nanomedicine ; 8(8): 1263-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22841914

RESUMEN

Integrin-binding, Arg-Gly-Asp (RGD)-containing peptides are the most widely used agents to deliver drugs, nanoparticles, and imaging agents. Although in nature, several protein-mediated signal transduction events depend on RGD motifs, the potential of RGD-empowered materials in triggering undesired cell-signaling cascades has been neglected. Using an RGD-functionalized protein nanoparticle, we show here that the RGD motif acts as a powerful trophic factor, supporting extracellular signal-regulated kinase 1/2 (ERK1/2)-linked cell proliferation and partial differentiation of PC12 cells, a neuronlike model. FROM THE CLINICAL EDITOR: This work focuses on RGD peptides, which are among the most commonly used tags for targeted drug delivery. They also promote protoneurite formation and expression of neuronal markers (MAP2) in model PC12 cells, which is an unexpected but relevant event in the functionalization of drugs and their nanocarriers.


Asunto(s)
Integrinas , Nanopartículas/química , Oligopéptidos/química , Péptidos/química , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Sistemas de Liberación de Medicamentos , Humanos , Integrinas/química , Integrinas/metabolismo , Ligandos , Sistema de Señalización de MAP Quinasas , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Transducción de Señal
9.
Methods Mol Biol ; 2183: 43-62, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32959240

RESUMEN

There is still a lack of vaccines for many bacterial infections for which the best treatment option would be a prophylactic one. On the other hand, effectiveness has been questioned for some existing vaccines, prompting new developments. Therapeutic vaccines are also becoming a treatment option in specific cases where antibiotics tend to fail. In this scenario, refinement and extension of the classical reverse vaccinology approach is allowing scientists to find new and more effective antigens. In this chapter, we describe an in silico methodology that integrates pangenomic, immunoinformatic, structural, and evolutionary approaches for the screening of potential antigens in a given bacterial species. The strategy focuses on targeting relatively conserved epitopes in core proteins to design broadly cross-protective vaccines and avoid allele-specific immunity. The proposed methodological steps and computational tools can be easily implemented in a reverse vaccinology approach not only to identify new leads with strong immune response but also to develop diagnostic assays.


Asunto(s)
Antígenos Bacterianos/inmunología , Bacterias/inmunología , Proteínas Bacterianas/inmunología , Biología Computacional , Proteoma , Proteómica , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Bases de Datos Factuales , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Anotación de Secuencia Molecular , Proteómica/métodos , Vacunología , Navegador Web , Flujo de Trabajo
10.
Commun Biol ; 4(1): 448, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837253

RESUMEN

In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. Here we use the crystallographic structure of Ttg2D at 2.5 Å resolution to reveal that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.


Asunto(s)
Proteínas Bacterianas/genética , Glicerofosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Periplasma/metabolismo , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo
11.
Pharmaceutics ; 13(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34834337

RESUMEN

CXCR4 is a cytokine receptor used by HIV during cell attachment and infection. Overexpressed in the cancer stem cells of more than 20 human neoplasias, CXCR4 is a convenient antitumoral drug target. T22 is a polyphemusin-derived peptide and an effective CXCR4 ligand. Its highly selective CXCR4 binding can be exploited as an agent for the cell-targeted delivery and internalization of associated antitumor drugs. Sharing chemical and structural traits with antimicrobial peptides (AMPs), the capability of T22 as an antibacterial agent remains unexplored. Here, we have detected T22-associated antimicrobial activity and biofilm formation inhibition over Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, in a spectrum broader than the reference AMP GWH1. In contrast to GWH1, T22 shows neither cytotoxicity over mammalian cells nor hemolytic activity and is active when displayed on protein-only nanoparticles through genetic fusion. Under the pushing need for novel antimicrobial agents, the discovery of T22 as an AMP is particularly appealing, not only as its mere addition to the expanding catalogue of antibacterial drugs. The recognized clinical uses of T22 might allow its combined and multivalent application in complex clinical conditions, such as colorectal cancer, that might benefit from the synchronous destruction of cancer stem cells and local bacterial biofilms.

12.
Acta Biomater ; 130: 211-222, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116228

RESUMEN

Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like ß-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.


Asunto(s)
Portadores de Fármacos , Nanomedicina , Sistemas de Liberación de Medicamentos , Proteínas Fluorescentes Verdes , Humanos , Nanoconjugados
13.
Acta Biomater ; 103: 272-280, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812843

RESUMEN

Fluorescent proteins are useful imaging and theranostic agents, but their potential superiority over alternative dyes is weakened by substantial photobleaching under irradiation. Enhancing protein photostability has been attempted through diverse strategies, with irregular results and limited applicability. In this context, we wondered if the controlled oligomerization of Green Fluorescent Protein (GFP) as nanoscale supramolecular complexes could stabilize the fluorophore through the newly formed protein-protein contacts, and thus, enhance its global photostability. For that, we have here analyzed the photobleaching profile of several GFP versions, engineered to self-assemble as tumour-homing nanoparticles with different targeting, size and structural stability. This has been done under prolonged irradiation in confocal laser scanning microscopy and by small-angle X-ray scattering. The results show that the oligomerization of GFP at the nanoscale enhances, by more than seven-fold, the stability of fluorescence emission. Interestingly, GFP nanoparticles are much more resistant to X-ray damage than the building block counterparts, indicating that the gained photostability is linked to enhanced structural resistance to radiation. Therefore, the controlled oligomerization of self-assembling fluorescent proteins as protein nanoparticles is a simple, versatile and powerful method to enhance their photostability for uses in precision imaging and therapy. STATEMENT OF SIGNIFICANCE: Fluorescent protein assembly into regular and highly symmetric nanoscale structures has been identified to confer enhanced structural stability against radiation stresses dramatically reducing their photobleaching. Being this the main bottleneck in the use of fluorescent proteins for imaging and theranostics, this protein architecture engineering principle appears as a powerful method to enhance their photostability for a broad applicability in precision imaging, drug delivery and theranostics.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Nanopartículas/química , Neoplasias/patología , Fotoblanqueo , Fluorescencia , Proteínas Fluorescentes Verdes/química , Modelos Moleculares , Nanopartículas/ultraestructura
14.
N Biotechnol ; 57: 11-19, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32028049

RESUMEN

Efficient protocols for the production of recombinant proteins are indispensable for the development of the biopharmaceutical sector. Accumulation of recombinant proteins in naturally-occurring protein aggregates is detrimental to biopharmaceutical development. In recent years, the view of protein aggregates has changed with the recognition that they are a valuable source of functional recombinant proteins. In this study, bovine interferon-gamma (rBoIFN-γ) was engineered to enhance the formation of protein aggregates, also known as protein nanoparticles (NPs), by the addition of aggregation-prone peptides (APPs) in the generally recognized as safe (GRAS) bacterial Lactococcus lactis expression system. The L6K2, HALRU and CYOB peptides were selected to assess their intrinsic aggregation capability to nucleate protein aggregation. These APPs enhanced the tendency of the resulting protein to aggregate at the expense of total protein yield. However, fine physico-chemical characterization of the resulting intracellular protein NPs, the protein released from them and the protein purified from the soluble cell fraction indicated that the compactability of protein conformations was directly related to the biological activity of variants of IFN-γ, used here as a model protein with therapeutic potential. APPs enhanced the aggregation tendency of fused rBoIFN-γ while increasing compactability of protein species. Biological activity of rBoIFN-γ was favored in more compacted conformations. Naturally-occurring protein aggregates can be produced in GRAS microorganisms as protein depots of releasable active protein. The addition of APPs to enhance the aggregation tendency has a positive impact in overall compactability and functionality of resulting protein conformers.


Asunto(s)
Interferón gamma/química , Nanopartículas/química , Péptidos/química , Animales , Bovinos , Lactococcus lactis/química , Agregado de Proteínas , Ingeniería de Proteínas
15.
Front Microbiol ; 11: 1160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582100

RESUMEN

The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the ß-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.

16.
Pharmaceutics ; 12(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414218

RESUMEN

Bacterial inclusion bodies (IBs) are protein-based nanoparticles of a few hundred nanometers formed during recombinant protein production processes in different bacterial hosts. IBs contain active protein in a mechanically stable nanostructured format that has been broadly characterized, showing promising potential in different fields such as tissue engineering, protein replacement therapies, cancer, and biotechnology. For immunomodulatory purposes, however, the interference of the format immunogenic properties-intrinsic to IBs-with the specific effects of the therapeutic protein is still an uncovered gap. For that, active and inactive forms of the catalytic domain of a matrix metalloproteinase-9 (MMP-9 and mutMMP-9, respectively) have been produced as IBs and compared with the soluble form for dermal inflammatory effects in mmp9 knock-out mice. After protein injections in air-pouches in the mouse model, MMP-9 IBs induce local neutrophil recruitment and increase pro-inflammatory chemokine levels, lasting for at least two days, whereas the effects triggered by the soluble MMP-9 format fade out after 3 h. Interestingly, the IB intrinsic effects (mutMMP-9 IBs) do not last more than 24 h. Therefore, it may be concluded that IBs could be used for the delivery of therapeutic proteins, such as immunomodulating proteins while preserving their stability in the specific tissue and without triggering important unspecific inflammatory responses due to the protein format.

17.
Nat Commun ; 11(1): 2044, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341346

RESUMEN

Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Stenotrophomonas maltophilia/genética , Alelos , Análisis por Conglomerados , Infección Hospitalaria/microbiología , Genoma Bacteriano , Geografía , Humanos , Infecciones Oportunistas/microbiología , Filogenia , Stenotrophomonas maltophilia/efectos de los fármacos , Virulencia
18.
Acta Biomater ; 83: 257-264, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366134

RESUMEN

Nanostructured protein materials show exciting biomedical applications, since both structure and function can be genetically programmed. In particular, self-assembling histidine-rich proteins benefit from functional plasticity that allows the generation of protein-only nanoparticles for cell targeted drug delivery. However, the rational development of constructs with improved functions is limited by a poor control of the oligomerization process. By exploring cross-interactions between histidine-tagged building blocks, we have identified a critical architectonic role of divalent cations. The obtained data instruct about how histidine-rich protein materials can be assembled, disassembled and reassembled within the nanoscale through the stoichiometric manipulation of divalent ions, in a biochemical approach to biomaterials design. STATEMENT OF SIGNIFICANCE: Divalent metal and non-metal cations such as Ni2+, Cu2+ Ca2+ and Zn2+ have been identified as unexpected molecular tools to control the assembling, disassembling and reassembling of histidine-rich protein materials at the nanoscale. Their stoichiometric manipulation allows generating defined protein-protein cross-molecular contacts between building blocks, for a powerful nano-biochemical manipulation of the material's architecture.


Asunto(s)
Cationes Bivalentes/química , Portadores de Fármacos/química , Metales/química , Nanopartículas/química , Proteínas/química , Proteínas Recombinantes/química
19.
Antibodies (Basel) ; 7(3)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31544878

RESUMEN

Due to significant advances in computational biology, protein prediction, together with antigen and epitope design, have rapidly moved from conventional methods, based on experimental approaches, to in silico-based bioinformatics methods. In this context, we report a reverse vaccinology study that identified a panel of 104 candidate antigens from the Gram-negative bacterial pathogen Burkholderia pseudomallei, which is responsible for the disease melioidosis. B. pseudomallei can cause fatal sepsis in endemic populations in the tropical regions of the world and treatment with antibiotics is mostly ineffective. With the aim of identifying potential vaccine candidates, we report the experimental validation of predicted antigen and type I fimbrial subunit, BPSL1626, which we show is able to recognize and bind human antibodies from the sera of Burkholderia infected patients and to stimulate T-lymphocytes in vitro. The prerequisite for a melioidosis vaccine, in fact, is that both antibody- and cell-mediated immune responses must be triggered. In order to reveal potential antigenic regions of the protein that may aid immunogen re-design, we also report the crystal structure of BPSL1626 at 1.9 Å resolution on which structure-based epitope predictions were based. Overall, our data suggest that BPSL1626 and three epitope regions here-identified can represent viable candidates as potential antigenic molecules.

20.
BMC Bioinformatics ; 8: 65, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17324296

RESUMEN

BACKGROUND: Protein aggregation correlates with the development of several debilitating human disorders of growing incidence, such as Alzheimer's and Parkinson's diseases. On the biotechnological side, protein production is often hampered by the accumulation of recombinant proteins into aggregates. Thus, the development of methods to anticipate the aggregation properties of polypeptides is receiving increasing attention. AGGRESCAN is a web-based software for the prediction of aggregation-prone segments in protein sequences, the analysis of the effect of mutations on protein aggregation propensities and the comparison of the aggregation properties of different proteins or protein sets. RESULTS: AGGRESCAN is based on an aggregation-propensity scale for natural amino acids derived from in vivo experiments and on the assumption that short and specific sequence stretches modulate protein aggregation. The algorithm is shown to identify a series of protein fragments involved in the aggregation of disease-related proteins and to predict the effect of genetic mutations on their deposition propensities. It also provides new insights into the differential aggregation properties displayed by globular proteins, natively unfolded polypeptides, amyloidogenic proteins and proteins found in bacterial inclusion bodies. CONCLUSION: By identifying aggregation-prone segments in proteins, AGGRESCAN http://bioinf.uab.es/aggrescan/ shall facilitate (i) the identification of possible therapeutic targets for anti-depositional strategies in conformational diseases and (ii) the anticipation of aggregation phenomena during storage or recombinant production of bioactive polypeptides or polypeptide sets.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Programas Informáticos , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Valor Predictivo de las Pruebas , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Programas Informáticos/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA