Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(23): 15202-15214, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33200604

RESUMEN

Irrigation water or soil contaminated with per- and polyfluoroalkyl substances (PFASs) raises concerns among regulators tasked with protecting human health from potential PFAS-contaminated food crops, with several studies identifying crop uptake as an important exposure pathway. We estimated daily dietary exposure intake of individual PFASs in vegetables for children and adults using Monte Carlo simulation in a tiered stochastic modeling approach: exposures were the highest for young children (1-2 years > adults > 3-5 years > 6-11 years > 12-19 years). Using the lowest available human health toxicity reference values (RfDs) and no additional exposure, estimated fifth percentile risk-based threshold concentrations in irrigation water were 38 ng/L (median 180 ng/L) for perfluorooctanoate (PFOA) and 140 ng/L (median 850 ng/L) for perfluorooctane sulfonate (PFOS). Thus, consumption of vegetables irrigated with PFAS-impacted water that meets the current 70 ng/L of PFOA and PFOS U.S. Environmental Protection Agency's lifetime health advisory for drinking water may or may not be protective of vegetable exposures to these contaminants. Hazard analyses using real-world PFAS-contaminated groundwater data for a hypothetical farm showed estimated exposures to most PFASs exceeding available or derived RfDs, indicating water-to-crop transfer is an important exposure pathway for communities with PFAS-impacted irrigation water.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Adulto , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Niño , Preescolar , Agua Potable/análisis , Fluorocarburos/análisis , Humanos , Verduras , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 43(1): 7-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850740

RESUMEN

Zebrafish (Danio rerio) are among the aquatic species most sensitive to perfluorooctane sulfonate (PFOS). Environmental regulatory agencies and researchers use effect benchmarks from laboratory zebrafish PFOS toxicity studies in PFOS-spiked water to calculate PFOS aquatic life criteria. Threshold values as low as 0.7 µg/L (identified in an early, limited scope study) have been used in criteria derivation and site-specific aquatic ecological risk assessments. The present study reviews PFOS effects benchmarks for lethality, growth, and reproduction endpoints from more than 20 zebrafish toxicity studies, including a recent multigenerational study conducted by the United States Army Corps of Engineers Engineer Research & Development Center. Our review of 12 key studies examining long-term, chronic exposures (including multigenerational exposures of 300 days or more) indicated that 0.7 µg/L should not be used as a conservative screening threshold given that effects could not be repeated at this concentration by the recent enhanced multigenerational study. Based on this finding and multiple chronic sublethal studies on PFOS in zebrafish, chronic effects on lethality, growth, and reproduction occur at concentrations two orders of magnitude higher than 0.7 µg/L. Overall, the present review indicates a no-effect screening level of 31 µg/L and a low-effect screening level of 96 µg/L should be used to develop PFOS aquatic life criteria and to inform site-specific ecological risk assessments that are charged with evaluating risks to freshwater fish. Environ Toxicol Chem 2024;43:7-18. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Perciformes , Contaminantes Químicos del Agua , Animales , Pez Cebra , Ácidos Alcanesulfónicos/toxicidad , Reproducción , Fluorocarburos/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Environ Toxicol Chem ; 43(1): 115-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018867

RESUMEN

A prior multigenerational perfluorooctane sulfonic acid (PFOS) exposure investigation in zebrafish reported adverse effects at 0.734 µg/L, among the lowest aquatic effect levels for PFOS reported to date. The present three-generation PFOS exposure quantified survival, growth, reproduction, and vitellogenin (VTG; egg yolk protein) responses in zebrafish, incorporating experimental design and procedural improvements relative to the earlier study. Exposures targeting 0.1, 0.6, 3.2, 20, and 100 µg/L in parental (P) and first filial (F1) generations lasted for 180 days post fertilization (dpf) and the second filial generation (F2) through 16 dpf. Survival decreased significantly in P and F2 generation exposures, but not in F1, at the highest PFOS treatment (100 µg/L nominal, 94-205 µg/L, measured). Significant adverse effects on body weight and length were infrequent, of low magnitude, and occurred predominantly at the highest exposure treatment. Finally, PFOS had no significant effects on P or F1 egg production and survival or whole-body VTG levels in P or F1 male fish. Overall, the predominance and magnitude of adverse PFOS effects at <1 µg/L reported in prior research were largely nonrepeatable in the present study. In contrast, the present study indicated a threshold for ecologically relevant adverse effects in zebrafish at 117 µg/L (SE 8 µg/L, n = 10) for survival and 47 µg/L (SE 11 µg/L, n = 19) for all statistically significant negative effects observed. Environ Toxicol Chem 2024;43:115-131. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Animales , Masculino , Pez Cebra/metabolismo , Reproducción , Ácidos Alcanesulfónicos/toxicidad , Ácidos Alcanesulfónicos/metabolismo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
4.
Environ Toxicol Chem ; 42(10): 2078-2090, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37314102

RESUMEN

With the goal of aiding risk assessors conducting site-specific risk assessments at per- and polyfluoroalkyl substance (PFAS)-contaminated sites, this critical review synthesizes information on the ecotoxicity of PFAS to amphibians in 10 amphibian species and 16 peer-reviewed publications. The studies in this review consisted of spiked-PFAS chronic toxicity experiments with perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) that evaluated apical endpoints typical of ecological risk-based decision making (survival, growth, and development). Body mass was the most sensitive endpoint, showing clear and biologically meaningful population level adverse effect sizes (≥20% adverse effects). From these results, we recommend chronic no observed effect concentration (NOEC) screening levels of 590 µg/L for PFOS and 130 µg/L for PFOA. At or above recommended chronic lowest observed effect concentration screening levels of 1100 µg/L PFOS and 1400 µg/L PFOA, there is an increased chance of adverse biologically relevant chronic effects. Biologically relevant adverse effects were not observed for PFHxS and 6:2 FTS, so unbounded NOECs of 1300 µg/L PFHxS and 1800 µg/L 6:2 FTS are recommended. Screening levels are also provided for the concentration of PFAS in an amphibian diet, amphibian tissue, and moss substrate. In addition, we recommend bioconcentration factors that can be useful to predict concentrations of PFAS in amphibians using concentrations in water; these values are useful for food web modeling to understand risks to vertebrate wildlife that prey on amphibians. Overall, the present study provides a guide to the wealth of ecotoxicological research on PFAS conducted by our research group and highlights the need for additional work that would improve the understanding of chemical risks to amphibians. Environ Toxicol Chem 2023;42:2078-2090. © 2023 SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Animales , Agua , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Medición de Riesgo , Alcanosulfonatos , Anfibios
5.
Environ Pollut ; 328: 121581, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054866

RESUMEN

Sediment porewater dialysis passive samplers, also known as "peepers," are inert containers with a small volume of water (usually 1-100 mL) capped with a semi-permeable membrane. When exposed to sediment over a period of days to weeks, chemicals (typically inorganics) in sediment porewater diffuse through the membrane into the water. Subsequent analysis of chemicals in the peeper water sample can provide a value that represents the concentrations of freely-dissolved chemicals in sediment, a useful measurement for understanding fate and risk. Despite more than 45 years of peeper uses in peer-reviewed research, there are no standardized methods available, which limits the application of peepers for more routine regulatory-driven decision making at sediment sites. In hopes of taking a step towards standardizing peeper methods for measuring inorganics in sediment porewater, over 85 research documents on peepers were reviewed to identify example applications, key methodological aspects, and potential uncertainties. The review found that peepers could be improved by optimizing volume and membrane geometry to decrease the necessary deployment time, decrease detection limits, and provide sufficient sample volumes needed for commercial analytical laboratories using standardized analytical methods. Several methodological uncertainties related to the potential impact of oxygen presence in peeper water prior to deployment and oxygen accumulation in peepers after retrieval from sediment were noted, especially for redox-sensitive metals. Additional areas that need further development include establishing the impact of deionized water in peeper cells when used in marine sediment and use of pre-equilibration sampling methods with reverse tracers allowing shorter deployment periods. Overall, it is expected that highlighting these technical aspects and research needs will encourage work to address critical methodological challenges, aiding in the standardization of peeper methods for measuring porewater concentrations at contaminated regulatory-driven sediment sites.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Metales/análisis , Sedimentos Geológicos/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Process Impacts ; 25(5): 980-995, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37128709

RESUMEN

A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Difusión
7.
Environ Toxicol Chem ; 41(6): 1568-1574, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35199881

RESUMEN

Activated carbon-based amendments have been demonstrated as a means of sequestering sediment-associated organic compounds such as polychlorinated biphenyls (PCBs). In a 2012 effort, an activated carbon amendment was placed at a 0.5-acre amendment area adjacent to and underneath Pier 7 at the Puget Sound Naval Shipyard and Intermediate Maintenance Facility, Bremerton, Washington, USA to reduce PCB availability. Multiple postplacement monitoring events over a 3-year period showed an 80%-90% reduction in PCBs, stability of activated carbon, and no significant negative impacts to the benthic community. To further evaluate the long-term performance, a follow-on to the approximately 7-year (82-month) postplacement monitoring event was conducted in 2019. The results of in situ porewater and bioaccumulation evaluations were consistent with previous observations, indicating overall PCB availability reductions of approximately 80%-90% from preamendment conditions. Multiple measurement approaches for quantifying activated carbon and amendment presence indicated that the amendment was present and stable in the amendment area and that the activated carbon content was similar to levels observed previously. As in the previous investigation, benthic invertebrate community metrics indicated that the amendment did not significantly impair benthic health. An application of carbon petrography to quantify activated carbon content in surface sediments was also explored. The results were found to correspond within a factor of 1.3 (on average) with those of data for the black carbon content via a black carbon chemical oxidation method, an approach that quantifies all forms of black carbon (including activated carbon). The results suggest that at sites with low soot-derived black carbon content in sediment (relative to the targeted activated carbon dose), the black carbon chemical oxidation method would be a reasonable method for measurement of activated carbon dosage in sediment at sites amended with activated carbon. Environ Toxicol Chem 2022;41:1568-1574. © 2022 SETAC.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Carbón Orgánico/química , Sedimentos Geológicos/química , Invertebrados , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Adv ; 32021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34337585

RESUMEN

Decades of research have shown that the concentration of freely dissolved PAH (Cfree) in sediment correlates with PAH bioavailability and toxicity to aquatic organisms. Passive sampling techniques and models have been used for measuring and predicting Cfree, respectively, but these techniques require weeks for analytical chemical measurements and data evaluation. This study evaluated the performance of a portable, field-deployable antibody-based PAH biosensor method that can provide measurements of PAH Cfree within a matter of minutes using a small volume of mechanically-extracted sediment porewater. Four sediments with a wide range of PAHs (ΣPAH 2.4 to 307 mg/kg) derived from petroleum, creosote, and mixed urban sources, were analyzed via three methods: 1) bulk chemistry analysis; 2) ex situ sediment passive sampling; and 3) biosensor analysis of mechanically-extracted sediment porewater. Mean ΣPAH Cfree determined by the biosensor for the four sediments (3.1 to 55 µg/L) were within a factor of 1.1 (on average) compared to values determined by the passive samplers (2.0 to 52 µg/L). All mean values differed by a factor of 3 or less. The biosensor was also useful in identifying sediments that are likely to be non-toxic to benthic invertebrates. In two of the four sediments, biosensor results of 20 and 55 µg/L exceeded a potential risk-based screening level of 10 µg/L, indicating toxicity could not be ruled out. PAH Toxic Units (ΣTU) measured in these two sediments using the passive sampler Cfree results were also greater than the ΣTU threshold of 1 (6.7 and 5.8, respectively), confirming the conclusions reached with the biosensor. In contrast, the other two sediments were identified as non-toxic by both the biosensor (3.1 and 4.3 µg/L) and the passive sampler (ΣTUs of 0.34 and 0.039). These results indicate that the biosensor is a promising tool for rapid screening of sediments potentially-impacted with PAHs.

9.
Chemosphere ; 273: 129699, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33524752

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants that are coming under increasing scrutiny. Currently, there is a paucity of effects data for marine aquatic life, limiting the assessment of ecological risks and compliance with water quality policies. In the present study, the toxicity of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to four standard marine laboratory toxicity testing species, encompassing five endpoints, were evaluated: 1) 96-h embryo-larval normal development for the purple sea urchin (Strongylocentrotus purpuratus); 2) 48-h embryo-larval normal development and normal survival for the Mediterranean mussel (Mytilus galloprovincialis); 3) 96-h survival of opossum shrimp (Americamysis bahia); and 4) 24-h light output for the bioluminescent dinoflagellate Pyrocystis lunula. All species were tested using standard United States Environmental Protection Agency (USEPA) and/or American Society for Testing and Materials (ASTM) International protocols. For PFOS and PFOA, the order of species sensitivity, starting with the most sensitive, was M. galloprovincialis, S. purpuratus, P. lunula, and A. bahia. The range of median lethal or median effect concentrations for PFOS (1.1-5.1 mg L-1) and PFOA (10-24 mg L-1) are comparable to the relatively few toxicity effect values available for marine species. In addition to providing effects data for PFOA and PFOS, this study indicates these species and endpoints are sensitive to PFAS such that their use will be appropriate for deriving toxicity data with other PFAS in marine ecosystems.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/toxicidad , Animales , Caprilatos/toxicidad , Ecosistema , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Estándares de Referencia , Estados Unidos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Integr Environ Assess Manag ; 17(4): 746-752, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33751777

RESUMEN

The use of aqueous film forming foam (AFFF) in the United States has caused concern about the potential effects of per- and polyfluoroalkyl substances (PFAS) on ecological resources. Moreover, the limited availability of scientific information and a lack of guidance have collectively resulted in significant challenges for ecological risk assessors supporting site-specific investigations and management decisions at PFAS-impacted sites. To address these needs, the environmental science and technology program of the Department of Defense (DoD), the Strategic Environmental Research and Development Program (SERDP), began funding four desktop review projects in 2018. Project teams were tasked with developing strategic guidance for assessing ecological risk at AFFF-impacted DoD sites. The projects focused specifically on ecological risk assessment practices for threatened and endangered (T&E) species; however, the recommendations and approaches presented in the projects are also applicable and adaptable to common species. The present review provides risk assessors and site managers an overview of how the resources provided in these projects can support ecological-risk-based management decisions at AFFF and other PFAS-impacted sites. Additionally, we synthesize perspectives offered by the four projects on a path forward for PFAS ecological risk assessment, including research needs that we recommend should be prioritized by the scientific community. Integr Environ Assess Manag 2021;17:746-752. © 2021 SETAC.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Agua , Contaminantes Químicos del Agua/análisis
11.
Environ Toxicol Chem ; 40(12): 3234-3260, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34325493

RESUMEN

A Society of Environmental Toxicology and Chemistry (SETAC) Focused Topic Meeting (FTM) on the environmental management of per- and polyfluoroalkyl substances (PFAS) convened during August 2019 in Durham, North Carolina (USA). Experts from around the globe were brought together to critically evaluate new and emerging information on PFAS including chemistry, fate, transport, exposure, and toxicity. After plenary presentations, breakout groups were established and tasked to identify and adjudicate via panel discussions overarching conclusions and relevant data gaps. The present review is one in a series and summarizes outcomes of presentations and breakout discussions related to (1) primary sources and pathways in the environment, (2) sorption and transport in porous media, (3) precursor transformation, (4) practical approaches to the assessment of source zones, (5) standard and novel analytical methods with implications for environmental forensics and site management, and (6) classification and grouping from multiple perspectives. Outcomes illustrate that PFAS classification will continue to be a challenge, and additional pressing needs include increased availability of analytical standards and methods for assessment of PFAS and fate and transport, including precursor transformation. Although the state of the science is sufficient to support a degree of site-specific and flexible risk management, effective source prioritization tools, predictive fate and transport models, and improved and standardized analytical methods are needed to guide broader policies and best management practices. Environ Toxicol Chem 2021;40:3234-3260. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecotoxicología , Fluorocarburos , Fluorocarburos/análisis , Fluorocarburos/toxicidad , North Carolina
12.
Sci Total Environ ; 407(3): 1035-47, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19004475

RESUMEN

As part of a comprehensive ecological risk assessment on a broad range of species, the potential for adverse effects in birds was evaluated at a chromate ore processing residue disposal site, Study Area 7, located at the confluence of the Lower Hackensack River, Passaic River, and Upper Newark Bay. Although detection of elevated concentrations of total chromium in sediment prompted the study, it was also necessary to consider potential risks related to other chemicals present in elevated concentrations due to widespread anthropogenic activities in Upper Newark Bay and its watershed. U.S. Army Corps of Engineers' TrophicTrace software was used to predict exposure to avian receptors using measured concentrations of chemicals in sediment, measured concentrations of chemicals in benthic invertebrates, and measured site physicochemical parameters. The TrophicTrace model was improved as part of the Study Area 7 ecological risk assessment to account for (1) incidental ingestion of sediment by dabbling and diving birds, (2) area use factors for spatial overlap of wide-ranging fish species and piscivorous birds, (3) spatially-explicit utilization of the site by birds with a variety of foraging strategies, and (4) temporal patterns of site utilization by migratory species. The ecological risk assessment demonstrated that chromium in sediment does not pose unacceptable hazards to avian receptors. Potentially unacceptable hazards were indicated for several organic chemicals (i.e., pesticides, polychlorinated biphenyls, and dioxins/furans), with hazard quotients highest for Upper Newark Bay reference conditions, reflecting potential widespread chemical impacts to the estuary. The modifications to TrophicTrace conducted for this assessment may be prudent and applicable for improving the accuracy and realism of other assessments involving avian receptors exposed to chemicals via contaminated sediment and transfer through the food web.


Asunto(s)
Aves , Cromo/análisis , Agua Dulce/análisis , Contaminantes Químicos del Agua/análisis , Alimentación Animal , Migración Animal , Animales , Aves/fisiología , DDT/análisis , Diclorodifenil Dicloroetileno/análisis , Diclorodifenildicloroetano/análisis , Ecosistema , Peces , Sedimentos Geológicos/análisis , Humanos , Invertebrados , New Jersey , Fenómenos Fisiológicos de las Plantas , Bifenilos Policlorados/análisis , Densidad de Población , Población Urbana
13.
Chemosphere ; 201: 335-341, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525662

RESUMEN

Releases of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) associated with Aqueous Film Forming Foams (AFFFs) have the potential to impact on-site and downgradient aquatic habitats. Dietary exposures of aquatic-dependent birds were modeled for seven PFASs (PFHxA, PFOA, PFNA, PFDA, PFHxS, PFOS, and PFDS) using five different scenarios based on measurements of PFASs obtained from five investigations of sites historically-impacted by AFFF. Exposure modeling was conducted for four avian receptors representing various avian feeding guilds: lesser scaup (Aythya affinis), spotted sandpiper (Actitis macularia), great blue heron (Ardea herodias), and osprey (Pandion haliaetus). For the receptor predicted to receive the highest PFAS exposure (spotted sandpiper), model-predicted exposure to PFOS exceeded a laboratory-based, No Observed Adverse Effect Level exposure benchmark in three of the five model scenarios, confirming that risks to aquatic-dependent avian wildlife should be considered for investigations of historic AFFF releases. Perfluoroalkyl sulfonic acids (PFHxS, PFOS, and PFDS) represented 94% (on average) of total PFAS exposures due to their prevalence in historical AFFF formulations, and increased bioaccumulation in aquatic prey items and partitioning to aquatic sediment relative to perfluoroalkyl carboxylic acids. Sediment-associated PFASs (rather than water-associated PFASs) were the source of the highest predicted PFAS exposures, and are likely to be very important for understanding and managing AFFF site-specific ecological risks. Additional considerations for research needs and site-specific ecological risk assessments are discussed with the goal of optimizing ecological risk-based decision making at AFFF sites and prioritizing research needs.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Aves , Ecosistema , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ácidos Carboxílicos , Agua/química
14.
Environ Toxicol Chem ; 37(6): 1767-1777, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29480553

RESUMEN

In situ amendment of surface sediment with activated carbon is a promising technique for reducing the availability of hydrophobic organic compounds in surface sediment. The present study evaluated the performance of a logistically challenging activated carbon placement in a high-energy hydrodynamic environment adjacent to and beneath a pier in an active military harbor. Measurements conducted preamendment and 10, 21, and 33 months (mo) postamendment using in situ exposures of benthic invertebrates and passive samplers indicated that the targeted 4% (by weight) addition of activated carbon (particle diameter ≤74 µm) in the uppermost 10 cm of surface sediment reduced polychlorinated biphenyl availability by an average (± standard deviation) of 81 ± 11% in the first 10 mo after amendment. The final monitoring event (33 mo after amendment) indicated an approximate 90 ± 6% reduction in availability, reflecting a slight increase in performance and showing the stability of the amendment. Benthic invertebrate census and sediment profile imagery did not indicate significant differences in benthic community ecological metrics among the preamendment and 3 postamendment monitoring events, supporting existing scientific literature that this approximate activated carbon dosage level does not significantly impair native benthic invertebrate communities. Recommendations for optimizing typical site-specific assessments of activated carbon performance are also discussed and include quantifying reductions in availability and confirming placement of activated carbon. Environ Toxicol Chem 2018;37:1767-1777. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Carbón Orgánico/química , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Biota , Sedimentos Geológicos/química , Invertebrados
15.
Chemosphere ; 63(1): 58-63, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16324732

RESUMEN

Tubifex tubifex metabolizes 2,4,6-trinitrotoluene (TNT) to 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). Elimination rates of metabolically-generated ADNTs are low compared to ADNTs absorbed directly from water, suggesting that metabolically-generated ADNTs may be bound or sequestered within tissue and therefore less available for elimination. A solid phase microextraction (SPME) technique was used to extract ADNTs from T. tubifex tissue to investigate the recalcitrance of metabolically-generated ADNTs. As SPME is a gentle, non-depletive, equilibrium sampling technique useful for measuring "available" organic compounds, we hypothesized that metabolically-generated ADNTs would be less extractable than absorbed ADNTs. T. tubifex were exposed to two scenarios to generate tissues containing absorbed ADNTs and metabolically-generated ADNTs. Tissue was then homogenized in a neutral buffer solution. Polyacrylate-coated (PA) SPME fibers were deployed and agitated in tissue homogenates to measure available ADNTs. Extractability of ADNTs from tissue containing metabolically-generated ADNTs was significantly less than expected: 50-60% based on the theoretical fiber-water partition ratio. Extractability of absorbed ADNTs was significantly higher (81-90%), and not significantly different than expected. The lower SPME extractability of metabolically-generated ADNTs may stem from the unavailability of metabolically-generated ADNTs sequestered in tissue or bound to tissue macromolecules during metabolism of TNT to ADNT. Tissue extractions using SPMEs may be able to estimate bound organic residues in tissue and serve to indicate the toxicological bioavailability of tissue-associated organic compounds.


Asunto(s)
Compuestos de Anilina/análisis , Oligoquetos/fisiología , Contaminantes Químicos del Agua/análisis , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Animales , Disponibilidad Biológica , Distribución Tisular , Contaminantes Químicos del Agua/metabolismo
16.
Integr Environ Assess Manag ; 12(1): 135-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26436822

RESUMEN

Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.


Asunto(s)
Ecotoxicología , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/toxicidad , Cadena Alimentaria , Compuestos Orgánicos/toxicidad , Animales , Biota , Ecosistema , Contaminantes Ambientales/análisis , Compuestos Orgánicos/análisis , Medición de Riesgo
17.
Environ Toxicol Chem ; 24(5): 1059-66, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16110982

RESUMEN

Disposable solid-phase microextraction fibers (SPMEs) were used to measure the availability of 2,4,6-trinitrotoluene (TNT) and its two primary transformation products, 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). The SPMEs (85-microm polyacrylate) and sediment-dwelling oligochaetes (Tubifex tubifex) were exposed to TNT-spiked sediment, to TNT-spiked sediment amended with activated carbon, and to TNT-, 2ADNT-, and 4ADNT-spiked water. Sediment concentration was a poor predictor of bioavailability in unamended and carbon-amended sediments (r2 = 0.14-0.73) The activated carbon amendment reduced the bioavailability of compounds in carbon-amended sediment, causing the relationships between Tubifex concentrations and sediment concentrations to differ significantly between unamended and carbon-amended sediment for all compounds. In contrast, SPME TNT concentrations predicted Tubifex TNT concentrations (r2 = 0.54-0.79). and regression models did not differ significantly among the three TNT-spiked matrices. The SPME 2ADNT and 4ADNT concentrations also were predictive of Tubifex 2ADNT and 4ADNT concentrations (r2 = 0.44-0.90). Relationships between Tubifex concentrations and SPME concentrations were the same between unamended and carbon-amended TNT-spiked sediments for 2ADNT and 4ADNT; however, the relationship in sediment (pooled data) differed from the relationship found in 2ADNT- and 4-ADNT-spiked water. The SPMEs provided carbon amendment-independent measures of ADNT availability in sediment and matrix-independent measures of TNT availability among the three matrices. The SPMEs show promise for predicting bioavailable organic compounds in sediment and water.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/química , Oligoquetos/metabolismo , Trinitrotolueno/análisis , Contaminantes Químicos del Agua/análisis , Animales , Disponibilidad Biológica , Carbono/química , Monitoreo del Ambiente , Trinitrotolueno/metabolismo , Contaminantes Químicos del Agua/metabolismo
18.
Environ Toxicol Chem ; 34(1): 6-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25319944

RESUMEN

Sediment quality values (SQV) are commonly used-and misused-to characterize the need for investigation, understand causes of observed effects, and derive management strategies to protect benthic invertebrates from direct toxic effects. The authors compiled more than 40 SQVs for mercury, nearly all of which are "co-occurrence" SQVs derived from databases of paired chemistry and benthic invertebrate effects data obtained from field-collected sediment. Co-occurrence SQVs are not derived in a manner that reflects cause-effect, concentration-response relationships for individual chemicals such as mercury, because multiple potential stressors often co-occur in the data sets used to derive SQVs. The authors assembled alternative data to characterize mercury-specific effect thresholds, including results of 7 laboratory studies with mercury-spiked sediments and 23 studies at mercury-contaminated sites (e.g., chloralkali facilities, mercury mines). The median (± interquartile range) co-occurrence SQVs associated with a lack of effects (0.16 mg/kg [0.13-0.20 mg/kg]) or a potential for effects (0.88 mg/kg [0.50-1.4 mg/kg]) were orders of magnitude lower than no-observed-effect concentrations reported in mercury-spiked toxicity studies (3.3 mg/kg [1.1-9.4 mg/kg]) and mercury site investigations (22 mg/kg [3.8-66 mg/kg]). Additionally, there was a high degree of overlap between co-occurrence SQVs and background mercury levels. Although SQVs are appropriate only for initial screening, they are commonly misused for characterizing or managing risks at mercury-contaminated sites. Spiked sediment and site data provide more appropriate and useful alternative information for characterization and management purposes. Further research is recommended to refine mercury effect thresholds for sediment that address the bioavailability and causal effects of mercury exposure. Environ Toxicol Chem 2015;34:6-21. © 2014 SETAC.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Sedimentos Geológicos/química , Invertebrados/efectos de los fármacos , Compuestos de Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Animales , Compuestos de Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad
19.
Aquat Toxicol ; 69(3): 199-213, 2004 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-15276327

RESUMEN

We examined the toxicokinetics and metabolism of 2,4,6-trinitirotoluene (TNT) and four of its major reduced metabolites (2-amino-4,6-dinitrotoluene (2ADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and 2,4-diamino-6-nitrotoluene (2,4DANT)) in the freshwater, aquatic oligochaete Tubifex tubifex exposed to spiked, reconstituted water. In uptake experiments with each compound, steady state concentrations were reached within 1h, and all absorbed compounds were completely eliminated in 0-3 h. The appearance of 2ADNT and 4ADNT (from metabolism of absorbed TNT) was five times slower, reaching 95% of steady state in 14.2-16.1h. Approximately, 82% of absorbed TNT was metabolized to ADNTs; metabolism to 4ADNT was favored over 2ADNT by a factor of 3. No further metabolism of ADNTs to DANTs was detected. After a loss of 29-50% of metabolically-generated ADNTs during the first hour of the TNT depuration experiment, Tubifex ADNT concentrations remained constant throughout the 53h depuration period. This suggests differences between the toxicokinetics of absorbed ADNTs and the toxicokinetics of metabolically-generated ADNTs. Experiments using radiolabeled (14C) TNT revealed that only 15-47% of 14C-TNT equivalents were identified as TNT, 2ADNT, or 4ADNT, indicating significant metabolism and/or binding to biomolecules. Of unidentified 14C-TNT equivalents, 28-38% remained unextractable. Both unextractable and extractable unidentified substances increased throughout the 54 h 14C-TNT uptake experiment. The unidentified portions of the radiolabel were not eliminated during a 53-h depuration experiment. Bioconcentration factors (BCFs) for HPLC-detectable compounds were found to be linearly related to log K(OW) (r2 = 0.9963). BCFs for 2ADNT, 4ADNT, and 2,4DANT were 10.22, 12.41, and 2.75, respectively. The BCF for TNT was 12.25, based on a molar sum of total TNT and its metabolites (SigmaTNT + 2ADNT + 4ADNT), and 2.53 based on TNT only. Compound hydrophobicity predicted the toxicokinetics and bioconcentration of compounds absorbed from water, however, the large discrepancy between the toxicokinetics of absorbed versus metabolically-generated ADNTs and the bioconcentration and toxicokinetics of the unidentified substances warrant further investigation.


Asunto(s)
Oligoquetos/metabolismo , Trinitrotolueno/metabolismo , Trinitrotolueno/farmacocinética , Análisis de Varianza , Animales , Radioisótopos de Carbono , Cromatografía Líquida de Alta Presión , Dinitrobencenos/metabolismo , Agua Dulce
20.
Chemosphere ; 49(1): 1-7, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12243324

RESUMEN

We investigated a method to isolate toxicologically relevant Cd in earthworms (Eisenia fetida) exposed in a 14-d Cd bioaccumulation study. A procedure involving acid insoluble ash (AIA) content was combined with homogenization and centrifugation techniques to divide total earthworm Cd burdens into supernatant (metallothionein-bound), pellet (toxicologically active), and soil-associated Cd fractions. Whereas the supernatant fraction of the earthworm digests increased linearly throughout the exposure period (from approximately 0 to 3.59 mmol/kg), the pellet fraction reached a steady-state concentration (95% CI) of 1.2 (0.9-1.4) mmol/kg, suggesting the ability of the metallothionein detoxification system to sequester incoming Cd. The AIA method was useful for correcting earthworm Cd concentrations for ingested soil-associated Cd and observing soil ingestion, which was suppressed in Cd-spiked artificial soil (1.06 (0.57-1.55)%) compared to controls (17.25 (14.36-20.15)%). These methods may be useful in investigating soil ingestion and Cd uptake and detoxification in earthworms.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente/métodos , Oligoquetos/química , Contaminantes del Suelo/análisis , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Fraccionamiento Químico , Técnicas de Química Analítica/métodos , Inactivación Metabólica , Oligoquetos/metabolismo , Contaminantes del Suelo/metabolismo , Toxicología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA