RESUMEN
BACKGROUND: The efficacy and safety of proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors were confirmed by several clinical trials, but its effectiveness in routine clinical practice in China has not been evaluated. This study aims to describe the real world effectiveness of PCSK-9 inhibitors combined with statins compared with statins-based therapy among patients with very high risk of atherosclerotic cardiovascular disease (ASCVD). METHODS: This is a multi-center observational study, enrolled patients from 32 hospitals who underwent percutaneous coronary intervention (PCI) from January to June in 2019. There are 453 patients treated with PCSK-9 inhibitors combined with statins in PCSK-9 inhibitor group and 2,610 patients treated with statins-based lipid lowering therapies in statins-based group. The lipid control rate and incidence of major adverse cardiovascular events (MACE) over six months were compared between two groups. A propensity score-matched (PSM) analysis was used to balance two groups on confounding factors. Survival analysis using Kaplan-Meier methods was applied for MACE. RESULTS: In a total of 3,063 patients, 89.91% of patients had received moderate or high-intensity statins-based therapy before PCI, but only 9.47% of patients had low-density lipoprotein cholesterol (LDL-C) levels below 1.4 mmol/L at baseline. In the PSM selected patients, LDL-C level was reduced by 42.57% in PCSK-9 inhibitor group and 30.81% (P < 0.001) in statins-based group after six months. The proportion of LDL-C ≤ 1.0 mmol/L increased from 5.29% to 29.26% in PCSK-9 inhibitor group and 0.23% to 6.11% in statins-based group, and the proportion of LDL-C ≤ 1.4 mmol/L increased from 10.36% to 47.69% in PCSK-9 inhibitor group and 2.99% to 18.43% in statins-based group ( P < 0.001 for both). There was no significant difference between PCSK-9 inhibitor and statins-based treatment in reducing the risk of MACE (hazard ratio = 2.52, 95% CI: 0.49-12.97, P = 0.250). CONCLUSIONS: In the real world, PCSK-9 inhibitors combined with statins could significantly reduce LDL-C levels among patients with very high risk of ASCVD in China. The long-term clinical benefits for patients received PCSK-9 inhibitor to reduce the risk of MACE is still unclear and requires further study.
RESUMEN
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ingeniería de Tejidos/métodos , Animales , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Vasos Coronarios/fisiología , Células Endoteliales , Fibroblastos/citología , Células HEK293 , Humanos , Masculino , Ratones , Contracción Muscular , Músculo Liso Vascular/fisiología , Ácido Poliglicólico/química , Porcinos , Andamios del TejidoRESUMEN
Endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and the subsequent cell deaths are essential steps in the pathogenesis of diabetic cardiomyopathy (DCM), a main cause of diabetics' morbidity and mortalities. The bis(maltolato)oxovanadium(IV) (BMOV), a potent oral vanadium complex with anti-diabetic properties and insulin-mimicking effects, was shown to improve cardiac dysfunctions in diabetic models. Here, we examined the effects of BMOV on UPR pathway protein expression and apoptotic cell deaths in both high glucose-treated cardiac H9C2 cells and in the hearts of diabetic rats. We show that in both the high glucose-treated cardiac cells and in the hearts of streptozotocin (STZ) diabetic rats, there was an overall activation of the UPR signaling, including both apoptotic (e.g., the cascades of PERK/EIf2α/ATF4/CHOP and of IRE1/caspase 12/caspase 3) and pro-survival (GRP78 and XBP1) signaling. A high amount of apoptotic cell deaths was also detected in both diabetic conditions. The administration of BMOV suppressed both the apoptotic and pro-survival UPR signaling and significantly attenuated apoptotic cell deaths in both conditions. The overall suppression of UPR signaling by BMOV suggests that the drug protects diabetic cardiomyopathy by counteracting reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Our findings lend support to promote the use of BMOV in the treatment of diabetic heart diseases.
Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Miocardio/metabolismo , Pironas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Vanadatos/farmacología , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Masculino , Miocardio/patología , Ratas , Ratas Sprague-DawleyRESUMEN
Bone marrow stem cells (BMSCs) have been used to treat patient with ST-segment elevation myocardial infarction (STEMI) via intracoronary route. We performed a meta-analysis to evaluate the short-term efficacy and safety of this modality. Seventeen randomized controlled trials (RCTs) of BMSC-based therapy for STEMI, delivered with 9 days of reperfusion and followed up shorter than 12 months, were identified by systematic review. Intracoronary BMSC therapy resulted in an overall significant improvement in left ventricular ejection fraction (LVEF) by 2.74 % (95 % confidence interval (CI) 2.09-3.39, P < 0.00001, I(2) = 84 %) at 3-6-month follow-up and 5.1 % (95 % CI 4.16-6.03, P < 0.00001 and I(2) = 85 %) at 12 months. The left ventricular end-systolic volume (LVESV) and wall motion score index (WMSI) were also reduced at 3-6 months. At 12 months, left ventricular end-diastolic volume (LVEDV), LVESV, and WMSI were significantly reduced in BMSC group. In conclusion, intracoronary BMSC therapy at post-STEMI is safe and effective in patient with acute STEMI.