Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 147(20)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32994171

RESUMEN

The mechanisms whereby leaf anlagen undergo proliferative growth and expansion to form wide, flat leaves are unclear. The maize gene NARROWSHEATH1 (NS1) is a WUSCHEL-related homeobox3 (WOX3) homolog expressed at the margins of leaf primordia, and is required for mediolateral outgrowth. To investigate the mechanisms of NS1 function, we used chromatin immunoprecipitation and laser-microdissection RNA-seq of leaf primordial margins to identify gene targets bound and modulated by NS1. Microscopic analyses of cell division and gene expression in expanding leaves, and reverse genetic analyses of homologous NS1 target genes in Arabidopsis, reveal that NS1 controls mediolateral outgrowth by repression of a growth inhibitor and promotion of cell division at primordial leaf margins. Intriguingly, homologous WOX gene products are expressed in stem cell-organizing centers and traffic to adjoining cells to activate stem-cell identity non-autonomously. In contrast, WOX3/NS1 does not traffic, and stimulates cell divisions in the same cells in which it is transcribed.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , División Celular , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Homeodominio/genética , Ácidos Indolacéticos/metabolismo , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Fase S , Plantones/genética , Zea mays/genética
2.
New Phytol ; 221(2): 706-724, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30106472

RESUMEN

Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tipificación del Cuerpo , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/crecimiento & desarrollo
3.
Plant Physiol ; 176(2): 1665-1675, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222192

RESUMEN

In Arabidopsis, DNA damage-induced programmed cell death is limited to the meristematic stem cell niche and its early descendants. The significance of this cell-type-specific programmed cell death is unclear. Here, we demonstrate in roots that it is the programmed destruction of the mitotically compromised stem cell niche that triggers its regeneration, enabling growth recovery. In contrast to wild-type plants, sog1 plants, which are defective in damage-induced programmed cell death, maintain the cell identities and stereotypical structure of the stem cell niche after irradiation, but these cells fail to undergo cell division, terminating root growth. We propose DNA damage-induced programmed cell death is employed by plants as a developmental response, contrasting with its role as an anticarcinogenic response in animals. This role in plants may have evolved to restore the growth of embryos after the accumulation of DNA damage in seeds.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Daño del ADN , Factores de Transcripción/metabolismo , Apoptosis , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , División Celular , Rayos gamma , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Meristema/efectos de la radiación , Regeneración , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Semillas/efectos de la radiación , Nicho de Células Madre , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 106(31): 12843-8, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19549833

RESUMEN

The Arabidopsis sog1-1 (suppressor of gamma response) mutant was originally isolated as a second-site suppressor of the radiosensitive phenotype of seeds defective in the repair endonuclease XPF. Here, we report that SOG1 encodes a putative transcription factor. This gene is a member of the NAC domain [petunia NAM (no apical meristem) and Arabidopsis ATAF1, 2 and CUC2] family (a family of proteins unique to land plants). Hundreds of genes are normally up-regulated in Arabidopsis within an hour of treatment with ionizing radiation; the induction of these genes requires the damage response protein kinase ATM, but not the related kinase ATR. Here, we find that SOG1 is also required for this transcriptional up-regulation. In contrast, the SOG1-dependent checkpoint response observed in xpf mutant seeds requires ATR, but does not require ATM. Thus, phenotype of the sog1-1 mutant mimics aspects of the phenotypes of both atr and atm mutants in Arabidopsis, suggesting that SOG1 participates in pathways governed by both of these sensor kinases. We propose that, in plants, signals related to genomic stress are processed through a single, central transcription factor, SOG1.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Daño del ADN , Rayos gamma , Genes de Plantas , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Histonas/metabolismo , Pérdida de Heterocigocidad , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Qa-SNARE/genética , Transcripción Genética/efectos de la radiación
5.
G3 (Bethesda) ; 8(11): 3583-3592, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30194092

RESUMEN

Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.


Asunto(s)
Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Zea mays/genética , Clonación Molecular , Mutación , Polimorfismo de Nucleótido Simple
7.
Front Plant Sci ; 5: 364, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136344

RESUMEN

Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants.

8.
Front Plant Sci ; 5: 206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904606

RESUMEN

Low linear energy transfer (LET) gamma rays and high LET HZE (high atomic weight, high energy) particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high versus low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE) of the two types of radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The "replication fork" checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA