Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183396

RESUMEN

The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Factor XIIIa/metabolismo , Fibrinógeno/metabolismo , Embolia Pulmonar/etiología , Embolia Pulmonar/patología , Vena Cava Inferior/patología , Trombosis de la Vena/complicaciones , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Imagen Óptica , Embolia Pulmonar/sangre , Trombosis de la Vena/sangre
2.
Langmuir ; 39(31): 10843-10854, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494418

RESUMEN

PDMS (polydimethylsiloxane) is a cheap, optically clear polymer that is elastic and can be easily and quickly fabricated into a wide array of microscale and nanoscale architectures, making it a versatile substrate for biophysical experiments on cell membranes. It is easy to imagine many new experiments will be devised that require a bilayer to be placed upon a substrate that is flexible or easily cast into a desired geometry, such as in lab-on-a-chip, organ-on-chip, and microfluidic applications, or for building accurate membrane models that replicate the surface structure and elasticity of the cytoskeleton. However, PDMS has its limitations, and the extent to which the behavior of membranes is affected on PDMS has not been fully explored. We use AFM and fluorescence optical microscopy to investigate the use of PDMS as a substrate for the formation and study of supported lipid bilayers (SLBs). Lipid bilayers form on plasma-treated PDMS and show free diffusion and normal phase transitions, confirming its suitability as a model bilayer substrate. However, lipid-phase separation on PDMS is severely restricted due to the pinning of domains to surface roughness, resulting in the cessation of lateral hydrodynamic flow. We show the high-resolution porous structure of PDMS and the extreme smoothing effect of oxygen plasma treatment used to hydrophilize the surface, but this is not flat enough to allow domain formation. We also observe bilayer degradation over hour timescales, which correlates with the known hydrophobic recovery of PDMS, and establish a critical water contact angle of 30°, above which bilayers degrade or not form at all. Care must be taken as incomplete surface oxidation and hydrophobic recovery result in optically invisible membrane disruption, which will also be transparent to fluorescence microscopy and lipid diffusion measurements in the early stages.


Asunto(s)
Membrana Dobles de Lípidos , Agua , Membrana Dobles de Lípidos/química , Elasticidad , Microscopía Fluorescente
3.
Small ; 17(14): e2006608, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33690933

RESUMEN

Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.


Asunto(s)
Tilacoides , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Complejos de Proteína Captadores de Luz/metabolismo , Lípidos , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
4.
Langmuir ; 35(47): 15352-15363, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31626551

RESUMEN

Supported lipid bilayers are model membranes formed at solid substrate surfaces. This architecture renders the membrane experimentally accessible to surface-sensitive techniques used to study their properties, including atomic force microscopy, optical fluorescence microscopy, quartz crystal microbalance, and X-ray/neutron reflectometry, and allows integration with technology for potential biotechnological applications such as drug screening devices. The experimental technique often dictates substrate choice or treatment, and it is anecdotally recognized that certain substrates are suitable for a particular experiment, but the exact influence of the substrate has not been comprehensively investigated. Here, we study the behavior of a simple model bilayer, phase-separating on a variety of commonly used substrates, including glass, mica, silicon, and quartz, with drastically different results. The distinct micron-scale domains observed on mica, identical to those seen in free-floating giant unilamellar vesicles, are reduced to nanometer-scale domains on glass and quartz. The mechanism for the arrest of domain formation is investigated, and the most likely candidate is nanoscale surface roughness, acting as a drag on the hydrodynamic motion of small domains during phase separation. Evidence was found that the physicochemical properties of the surface have a mediating effect, most likely because of the changes in the lubricating interstitial water layer between the surface and bilayer.


Asunto(s)
Silicatos de Aluminio/química , Vidrio/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Cuarzo/química , Silicio/química , 1,2-Dipalmitoilfosfatidilcolina/química , Difusión , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Propiedades de Superficie
5.
Blood ; 127(4): 487-95, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26608329

RESUMEN

Previous studies have shown effects of thrombin and fibrinogen γ' on clot structure. However, structural information was obtained using electron microscopy, which requires sample dehydration. Our aim was to investigate the role of thrombin and fibrinogen γ' in modulating fibrin structure under fully hydrated conditions. Fibrin fibers were studied using turbidimetry, atomic force microscopy, electron microscopy, and magnetic tweezers in purified and plasma solutions. Increased thrombin induced a pronounced decrease in average protofibril content per fiber, with a relatively minor decrease in fiber size, leading to the formation of less compact fiber structures. Atomic force microscopy under fully hydrated conditions confirmed that fiber diameter was only marginally decreased. Decreased protofibril content of the fibers produced by high thrombin resulted in weakened clot architecture as analyzed by magnetic tweezers in purified systems and by thromboelastometry in plasma and whole blood. Fibers produced with fibrinogen γ' showed reduced protofibril packing over a range of thrombin concentrations. High-magnification electron microscopy demonstrated reduced protofibril packing in γ' fibers and unraveling of fibers into separate protofibrils. Decreased protofibril packing was confirmed in plasma for high thrombin concentrations and fibrinogen-deficient plasma reconstituted with γ' fibrinogen. These findings demonstrate that, in fully hydrated conditions, thrombin and fibrinogen γ' have dramatic effects on protofibril content and that protein density within fibers correlates with strength of the fibrin network. We conclude that regulation of protofibril content of fibers is an important mechanism by which thrombin and fibrinogen γ' modulate fibrin clot structure and strength.


Asunto(s)
Coagulación Sanguínea , Fibrinógenos Anormales/metabolismo , Fibrinógenos Anormales/ultraestructura , Trombina/metabolismo , Trombina/ultraestructura , Viscosidad Sanguínea , Humanos , Microscopía de Fuerza Atómica , Nefelometría y Turbidimetría , Trombosis/metabolismo
6.
Biophys J ; 112(2): 313-324, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122217

RESUMEN

Phospholipid ternary systems are useful model systems for understanding lipid-lipid interactions and their influence on biological properties such as cell signaling and protein translocation. Despite extensive studies, there are still open questions relating to membrane phase behavior, particularly relating to a proposed state of three-phase coexistence, due to the difficulty in clearly distinguishing the three phases. We look in and around the region of the phase diagram where three phases are expected and use a combination of different atomic force microscopy (AFM) modes to present the first images of three coexisting lipid phases in biomimetic cell lipid membranes. Domains form through either nucleation or spinodal decomposition dependent upon composition, with some exhibiting both mechanisms in different domains simultaneously. Slow cooling rates are necessary to sufficiently separate mixtures with high proportions of lo and lß phase. We probe domain heights and mechanical properties and demonstrate that the gel (lß) domains have unusually low structural integrity in the three-phase region. This finding supports the hypothesis of a "disordered gel" state that has been proposed from NMR studies of similar systems, where the addition of small amounts of cholesterol was shown to disrupt the regular packing of the lß state. We use NMR data from the literature on chain disorder in different mixtures and estimate an expected step height that is in excellent agreement with the AFM data. Alternatively, the disordered solid phase observed here and in the wider literature could be explained by the lß phase being out of equilibrium, in a surface kinetically trapped state. This view is supported by the observation of unusual growth of nucleated domains, which we term "tree-ring growth," reflecting compositional heterogeneity in large disordered lß phase domains.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Membranas Artificiales , Fenómenos Biomecánicos , Microscopía de Fuerza Atómica
7.
Sci Technol Adv Mater ; 18(1): 197-209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469734

RESUMEN

Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

8.
Biophys J ; 109(5): 936-47, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26331251

RESUMEN

Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1's anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7-8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1's anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Venenos de Avispas/farmacología , Membrana Celular/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Cinética , Porosidad/efectos de los fármacos , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
9.
Nano Lett ; 14(10): 5984-8, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25166509

RESUMEN

The diffusion behavior of biological components in cellular membranes is vital to the function of cells. By collapsing the complexity of planar 2D membranes down to one dimension, fundamental investigations of bimolecular behavior become possible in one dimension. Here we develop lipid nanolithography methods to produce membranes, under fluid, with widths as low as 6 nm but extending to microns in length. We find reduced lipid mobility, as the width is reduced below 50 nm, suggesting different lipid packing in the vicinity of boundaries. The insertion of a membrane protein, M2, into these systems, allowed characterization of protein diffusion using high-speed AFM to demonstrate the first membrane protein 1D random walk. These quasi-1D lipid bilayers are ideal for testing and understanding fundamental concepts about the roles of dimensionality and size on physical properties of membranes from energy transfer to lipid packing.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Difusión , Humanos , Virus de la Influenza A/química , Gripe Humana/virología , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas de la Matriz Viral/química
10.
Soft Matter ; 10(5): 694-700, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24652242

RESUMEN

Microbubbles offer unique properties as combined carriers of therapeutic payloads and diagnostic agents. Here we report on the development of novel microbubble architectures that in addition to the usual lipid shell have an actin cytoskeletal cortex assembled on their exterior. We show, using atomic force microscopy that this biomimetic coating creates a thin mesh that allows tuning of the mechanical properties of microbubbles and that the nature of actin assembly is determined by the fluidity of the lipid layer. Further, we show that it is possible to attach payloads and targeting-ligands to the actin scaffold. Resistance to gas permeation showed that the additional actin layer reduces gas diffusion across the shell and thus increases bubble lifetime. This study demonstrates a one step method to creating more complex microbubble architectures, which would be capable of further modification and tuning through the inclusion of actin binding proteins.


Asunto(s)
Actinas/química , Lípidos/química , Microburbujas , Difusión , Gases , Polimerizacion
11.
Biophys J ; 105(10): 2355-65, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24268147

RESUMEN

We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant-making this a practical approach for creating stable lipid-actin systems via self-assembly.


Asunto(s)
Actinas/química , Membrana Dobles de Lípidos/química , Multimerización de Proteína , Adsorción , Animales , Membrana Celular/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Imagen Molecular , Estructura Cuaternaria de Proteína , Conejos
12.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1677-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999291

RESUMEN

Protein ubiquitination in eukaryotic cells is mediated by diverse E3 ligase enzymes that each target specific substrates. The cullin E3 ligase complexes are the most abundant class of E3 ligases; they contain various cullin components that serve as scaffolds for interaction with substrate-recruiting adaptor proteins. SPOP is a BTB-domain adaptor of the cullin-3 E3 ligase complexes; it selectively recruits substrates via its N-terminal MATH domain, whereas its BTB domain mediates dimerization and interactions with cullin-3. It has recently been recognized that the high-order oligomerization of SPOP enhances the ubiquitination of substrates. Here, a dimerization interface in the SPOP C-terminus is identified and it is shown that the dimerization interfaces of the BTB domain and of the C-terminus act independently and in tandem to generate high-order SPOP oligomers. The crystal structure of the dimeric SPOP C-terminal domain is reported at 1.5 Šresolution and it is shown that Tyr353 plays a critical role in high-order oligomerization. A model of the high-order SPOP oligomer is presented that depicts a helical organization that could enhance the efficiency of substrate ubiquitination.


Asunto(s)
Proteínas Cullin/química , Proteínas Nucleares/química , Proteínas Represoras/química , Ubiquitina-Proteína Ligasas/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Proteínas Cullin/genética , Proteínas Cullin/ultraestructura , Humanos , Microscopía de Fuerza Atómica , Modelos Químicos , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Proteínas Represoras/genética , Proteínas Represoras/ultraestructura , Especificidad por Sustrato/genética , Ubiquitinación/genética , Regulación hacia Arriba/genética
13.
Nanoscale Adv ; 5(4): 1102-1114, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798497

RESUMEN

Despite the significance of nanotribology in the design of functional biomaterials, little is known about nanoscale friction in the presence of protein-coated soft contact surfaces. Here, we report a detailed investigation of frictional behaviour of sustainable plant proteins at the nanoscale for the first time, using deformable bio-relevant surfaces that achieve biologically relevant contact pressures. A combination of atomic force microscopy, quartz crystal microbalance with dissipation monitoring, and friction force microscopy with soft polydimethylsiloxane (PDMS, 150 kPa) surfaces was employed to elucidate the frictional properties of model plant proteins, i.e. lupine, pea, and potato proteins at the nanoscale while systematically varying the pH and ionic strength. Interactions of these plant proteins with purified mucins were also probed. We provide the much-needed direct experimental evidence that the main factor dictating the frictional properties of plant proteins is their affinity towards the surface, followed by the degree of protein film hydration. Proteins with high surface affinity, such as pea and potato protein, have better lubricating performance than lupine at the nanoscale. Other minor factors that drive lubrication are surface interactions between sliding bodies, especially at low load, whilst jamming of the contact area caused by larger protein aggregates increases friction. Novel findings reveal that interactions between plant proteins and mucins lead to superior lubricating properties, by combining high surface affinity from the plant proteins and high hydration by mucins. We anticipate that fundamental understanding gained from this work will set the stage for the design of a plethora of sustainable biomaterials and food with optimum nanolubrication performance.

14.
J Phys Chem B ; 127(8): 1715-1727, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802586

RESUMEN

Fluorescent probes are useful in biophysics research to assess the spatial distribution, mobility, and interactions of biomolecules. However, fluorophores can undergo "self-quenching" of their fluorescence intensity at high concentrations. A greater understanding of concentration-quenching effects is important for avoiding artifacts in fluorescence images and relevant to energy transfer processes in photosynthesis. Here, we show that an electrophoresis technique can be used to control the migration of charged fluorophores associated with supported lipid bilayers (SLBs) and that quenching effects can be quantified with fluorescence lifetime imaging microscopy (FLIM). Confined SLBs containing controlled quantities of lipid-linked Texas Red (TR) fluorophores were generated within 100 × 100 µm corral regions on glass substrates. Application of an electric field in-plane with the lipid bilayer induced the migration of negatively charged TR-lipid molecules toward the positive electrode and created a lateral concentration gradient across each corral. The self-quenching of TR was directly observed in FLIM images as a correlation of high concentrations of fluorophores to reductions in their fluorescence lifetime. By varying the initial concentration of TR fluorophores incorporated into the SLBs from 0.3% to 0.8% (mol/mol), the maximum concentration of fluorophores reached during electrophoresis could be modulated from 2% up to 7% (mol/mol), leading to the reduction of fluorescence lifetime down to 30% and quenching of the fluorescence intensity down to 10% of their original levels. As part of this work, we demonstrated a method for converting fluorescence intensity profiles into molecular concentration profiles by correcting for quenching effects. The calculated concentration profiles have a good fit to an exponential growth function, suggesting that TR-lipids can diffuse freely even at high concentrations. Overall, these findings prove that electrophoresis is effective at producing microscale concentration gradients of a molecule-of-interest and that FLIM is an excellent approach to interrogate dynamic changes to molecular interactions via their photophysical state.


Asunto(s)
Colorantes Fluorescentes , Membrana Dobles de Lípidos , Microscopía Fluorescente/métodos , Membrana Dobles de Lípidos/química , Membranas , Electroforesis
15.
Nat Commun ; 14(1): 4743, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550321

RESUMEN

With the resource-intensive meat industry accounting for over 50% of food-linked emissions, plant protein consumption is an inevitable need of the hour. Despite its significance, the key barrier to adoption of plant proteins is their astringent off-sensation, typically associated with high friction and consequently poor lubrication performance. Herein, we demonstrate that by transforming plant proteins into physically cross-linked microgels, it is possible to improve their lubricity remarkably, dependent on their volume fractions, as evidenced by combining tribology using biomimetic tongue-like surface with atomic force microscopy, dynamic light scattering, rheology and adsorption measurements. Experimental findings which are fully supported by numerical modelling reveal that these non-lipidic microgels not only decrease boundary friction by an order of magnitude as compared to native protein but also replicate the lubrication performance of a 20:80 oil/water emulsion. These plant protein microgels offer a much-needed platform to design the next-generation of healthy, palatable and sustainable foods.


Asunto(s)
Microgeles , Proteínas de Plantas , Lubrificación , Reología , Microscopía de Fuerza Atómica , Fricción
16.
Adv Colloid Interface Sci ; 320: 102983, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690329

RESUMEN

This review discusses the current knowledge of interfacial and bulk interactions of biopolymeric microgels in relation to the well-established properties of synthetic microgels for applications as viscosity modifiers and Pickering stabilisers. We present a timeline showing the key milestones in designing microgels and their bulk/ interfacial performance. Poly(N-isopropylacrylamide) (pNIPAM) microgels have remained as the protagonist in the synthetic microgel domain whilst proteins or polysaccharides have been primarily used to fabricate biopolymeric microgels. Bulk properties of microgel dispersions are dominated by the volume fraction (ϕ) of the microgel particles, but ϕ is difficult to pinpoint, as addressed by many theoretical models. By evaluating recent experimental studies over the last five years, we find an increasing focus on the analysis of microgel elasticity as a key parameter in modulating their packing at the interfaces, within the provinces of both synthetic and biopolymeric systems. Production methods and physiochemical factors shown to influence microgel swelling in the aqueous phase can have a significant impact on their bulk as well as interfacial performance. Compared to synthetic microgels, biopolymer microgels show a greater tendency for polydispersity and aggregation and do not appear to have a core-corona structure. Comprehensive studies of biopolymeric microgels are still lacking, for example, to accurately determine their inter- and intra- particle interactions, whilst a wider variety of techniques need to be applied in order to allow comparisons to real systems of practical usage.


Asunto(s)
Microgeles , Geles/química , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
17.
Biochim Biophys Acta Biomembr ; 1865(8): 184217, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37648011

RESUMEN

There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1-4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres.


Asunto(s)
1-Butanol , Butanoles , Clostridium , Membranas
18.
Biochem J ; 439(1): 67-77, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21702743

RESUMEN

Aß (amyloid-ß peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aß, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of the formation of transient soluble oligomers. This observed toxicity may be associated with the ability of oligomers to associate with and cause permeation of lipid membranes. In the present study, we have investigated the ability of oligomeric and fibrillar Aß42 to simultaneously associate with and affect the integrity of biomimetic membranes in vitro. Surface plasmon field-enhanced fluorescence spectroscopy reveals that the binding of the freshly dissolved oligomeric 42-residue peptide binds with a two-step association with the lipid bilayer, and causes disruption of the membrane resulting in leakage from vesicles. In contrast, fibrils bind with a 2-fold reduced avidity, and their addition results in approximately 2-fold less fluorophore leakage compared with oligomeric Aß. Binding of the oligomers may be, in part, mediated by the GM1 ganglioside receptors as there is a 1.8-fold increase in oligomeric Aß binding and a 2-fold increase in permeation compared with when GM1 is not present. Atomic force microscopy reveals the formation of defects and holes in response to oligomeric Aß, but not preformed fibrillar Aß. The results of the present study indicate that significant membrane disruption arises from association of low-molecular-mass Aß and this may be mediated by mechanical damage to the membranes by Aß aggregation. This membrane disruption may play a key role in the mechanism of Aß-related cell toxicity in AD.


Asunto(s)
Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Unión Proteica , Espectrometría de Fluorescencia
19.
J Thromb Haemost ; 20(1): 6-16, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528378

RESUMEN

Polymeric fibrin displays unique structural and biomechanical properties that contribute to its essential role of generating blood clots that stem bleeds. The aim of this review is to discuss how the fibrin clot is formed, how protofibrils make up individual fibrin fibers, what the relationship is between the molecular structure and fibrin biomechanical properties, and how fibrin biomechanical properties relate to the risk of thromboembolic disease. Fibrin polymerization is driven by different types of bonds, including knob-hole interactions displaying catch-slip characteristics, and covalent crosslinking of fibrin polypeptides by activated factor XIII. Key biophysical properties of fibrin polymer are its visco-elasticity, extensibility and resistance to rupture. The internal packing of protofibrils within fibers changes fibrin biomechanical behavior. There are several methods to analyze fibrin biomechanical properties at different scales, including AFM force spectroscopy, magnetic or optical tweezers and rheometry, amongst others. Clinically, fibrin biomechanical characteristics are key for the prevention of thromboembolic disorders such as pulmonary embolism. Future studies are needed to address unanswered questions regarding internal molecular structure of the fibrin polymer, the structural and molecular basis of its remarkable mechanical properties and the relationship of fibrin biomechanical characteristics with thromboembolism in patients with deep vein thrombosis and ischemic stroke.


Asunto(s)
Fibrina , Hemostasis , Trombosis , Elasticidad , Factor XIIIa/química , Fibrina/química , Humanos , Tromboembolia
20.
Blood Adv ; 6(13): 4015-4027, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35561308

RESUMEN

Fibrin polymerization involves thrombin-mediated exposure of knobs on one monomer that bind to holes available on another, leading to the formation of fibers. In silico evidence has suggested that the classical A:a knob-hole interaction is enhanced by surrounding residues not directly involved in the binding pocket of hole a, via noncovalent interactions with knob A. We assessed the importance of extended knob-hole interactions by performing biochemical, biophysical, and in silico modeling studies on recombinant human fibrinogen variants with mutations at residues responsible for the extended interactions. Three single fibrinogen variants, γD297N, γE323Q, and γK356Q, and a triple variant γDEK (γD297N/γE323Q/γK356Q) were produced in a CHO (Chinese Hamster Ovary) cell expression system. Longitudinal protofibril growth probed by atomic force microscopy was disrupted for γD297N and enhanced for the γK356Q mutation. Initial polymerization rates were reduced for all variants in turbidimetric studies. Laser scanning confocal microscopy showed that γDEK and γE323Q produced denser clots, whereas γD297N and γK356Q were similar to wild type. Scanning electron microscopy and light scattering studies showed that fiber thickness and protofibril packing of the fibers were reduced for all variants. Clot viscoelastic analysis showed that only γDEK was more readily deformable. In silico modeling suggested that most variants displayed only slip-bond dissociation kinetics compared with biphasic catch-slip kinetics characteristics of wild type. These data provide new evidence for the role of extended interactions in supporting the classical knob-hole bonds involving catch-slip behavior in fibrin formation, clot structure, and clot mechanics.


Asunto(s)
Fibrina , Trombosis , Animales , Células CHO , Cricetinae , Cricetulus , Fibrina/metabolismo , Fibrinógeno/metabolismo , Humanos , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA