RESUMEN
HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.
Asunto(s)
Linfocitos T CD8-positivos , Infecciones por VIH , Humanos , Células Asesinas Naturales , Activación de Linfocitos , ARN , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , ViremiaRESUMEN
Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.
Asunto(s)
Infecciones por VIH , ARN Viral , Transcriptoma , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/genética , Interferones/genética , Interleucina-7/genética , ARN Viral/genética , Transcriptoma/inmunología , Proteína p53 Supresora de Tumor/genéticaRESUMEN
During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores CXCR5/inmunología , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Inmunoterapia , Ganglios Linfáticos/inmunología , Macaca mulatta , ARN Viral , Receptores CXCR5/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Carga ViralRESUMEN
BACKGROUND: Biological sex and the estrogen receptor alpha (ESR1) modulate human immunodeficiency virus (HIV) activity. Few women have enrolled in clinical trials of latency reversal agents (LRAs); their effectiveness in women is unknown. We hypothesized that ESR1 antagonism would augment induction of HIV expression by the LRA vorinostat. METHODS: AIDS Clinical Trials Group A5366 enrolled 31 virologically suppressed, postmenopausal women on antiretroviral therapy. Participants were randomized 2:1 to receive tamoxifen (arm A, TAMOX/VOR) or observation (arm B, VOR) for 5 weeks followed by 2 doses of vorinostat. Primary end points were safety and the difference between arms in HIV RNA induction after vorinostat. Secondary analyses included histone 4 acetylation, HIV DNA, and plasma viremia by single copy assay (SCA). RESULTS: No significant adverse events were attributed to study treatments. Tamoxifen did not enhance vorinostat-induced HIV transcription (between-arm ratio, 0.8; 95% confidence interval [CI], .2-2.4). Vorinostat-induced HIV transcription was higher in participants with increases in H4Ac (fold increase, 2.78; 95% CI, 1.34-5.79) vs those 9 who did not (fold increase, 1.04; 95% CI, .25-4.29). HIV DNA and SCA plasma viremia did not substantially change. CONCLUSIONS: Tamoxifen did not augment vorinostat-induced HIV RNA expression in postmenopausal women. The modest latency reversal activity of vorinostat, postmenopausal status, and low level of HIV RNA expression near the limits of quantification limited assessment of the impact of tamoxifen. This study is the first HIV cure trial done exclusively in women and establishes both the feasibility and necessity of investigating novel HIV cure strategies in women living with HIV. CLINICAL TRIALS REGISTRATION: NCT03382834.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Linfocitos T CD4-Positivos , ADN/uso terapéutico , Receptor alfa de Estrógeno/metabolismo , Femenino , VIH-1/genética , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histonas/metabolismo , Histonas/uso terapéutico , Humanos , ARN/metabolismo , ARN/uso terapéutico , Tamoxifeno/efectos adversos , Tamoxifeno/metabolismo , Viremia/tratamiento farmacológico , Latencia del Virus , Vorinostat/metabolismo , Vorinostat/farmacología , Vorinostat/uso terapéuticoRESUMEN
The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought.IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.
Asunto(s)
Células Dendríticas Foliculares/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptores Quiméricos de Antígenos/inmunología , Anticuerpos Monoclonales , Anticuerpos Antivirales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Dendríticas , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos Mononucleares/virología , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Latencia del Virus/fisiologíaRESUMEN
CD8+ T cells play an important role in controlling of HIV and SIV infections. However, these cells are largely excluded from B cell follicles where HIV and SIV producing cells concentrate during chronic infection. It is not known, however, if antigen-specific CD8+ T cells are excluded gradually as pathogenesis progresses from early to chronic phase, or this phenomenon occurs from the beginning infection. In this study we determined that SIV-specific CD8+ T cells were largely excluded from follicles during early infection, we also found that within follicles, they were entirely absent in 60% of the germinal centers (GCs) examined. Furthermore, levels of SIV-specific CD8+ T cells in follicular but not extrafollicular areas significantly correlated inversely with levels of viral RNA+ cells. In addition, subsets of follicular SIV-specific CD8+ T cells were activated and proliferating and expressed the cytolytic protein perforin. These studies suggest that a paucity of SIV-specific CD8+ T cells in follicles and complete absence within GCs during early infection may set the stage for the establishment of persistent chronic infection.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Enfermedad Aguda , Animales , Linfocitos B/fisiología , Linfocitos T CD8-positivos/metabolismo , Centro Germinal/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/inmunología , Replicación ViralRESUMEN
Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.
Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Ratones , Filogenia , Bazo/inmunología , Bazo/virología , Carga Viral/inmunología , Carga Viral/fisiología , Viremia/inmunología , Viremia/virología , Latencia del Virus/inmunología , Replicación Viral/inmunologíaRESUMEN
Analytic treatment interruption (ATI) studies are required to evaluate strategies aimed at achieving ART-free HIV remission, but the impact of ATI on the viral reservoir remains unclear. We validated a DNA size selection-based assay for measuring levels of integrated HIV DNA and applied it to assess the effects of short-term ATI on the HIV reservoir. Samples from participants from four AIDS Clinical Trials Group ATI studies were assayed for integrated HIV DNA levels. Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained for 12 participants with available samples pre-ATI and approximately 6 months after ART resumption. Four participants also had samples available during the ATI. The median duration of ATI was 12 weeks. Validation of the HIV integrated DNA size-exclusion (HIDE) assay was performed using samples spiked with unintegrated HIV DNA, HIV-infected cell lines, and participant PBMCs. The HIDE assay eliminated 99% of unintegrated HIV DNA species and strongly correlated with the established Alu-gag assay. For the majority of individuals, integrated DNA levels increased during ATI and subsequently declined upon ART resumption. There was no significant difference in the levels of integrated HIV DNA between the pre- and post-ATI time points, with a median ratio of post- to pre-ATI HIV DNA levels of 0.95. Using a new integrated HIV DNA assay, we found minimal change in the levels of integrated HIV DNA in participants who underwent an ATI, followed by 6 months of ART. This suggests that short-term ATI can be conducted without a significant impact on the levels of integrated proviral DNA in the peripheral blood.IMPORTANCE Interventions aimed at achieving sustained antiretroviral therapy (ART)-free HIV remission require treatment interruption trials to assess their efficacy. However, these trials are accompanied by safety concerns related to the expansion of the viral reservoir. We validated an assay that uses an automated DNA size-selection platform for quantifying levels of integrated HIV DNA and is less sample- and labor-intensive than current assays. Using stored samples from AIDS Clinical Trials Group studies, we found that short-term ART discontinuation had minimal impact on integrated HIV DNA levels after ART resumption, providing reassurance about the reservoir effects of short-term treatment interruption trials.
Asunto(s)
Fármacos Anti-VIH/uso terapéutico , ADN Viral/genética , Infecciones por VIH/virología , Carga Viral/genética , Integración Viral/genética , VIH-1/genética , Humanos , Leucocitos Mononucleares/virología , Provirus/genética , Carga Viral/efectos de los fármacos , Privación de TratamientoAsunto(s)
Etnicidad , Grupos Raciales , Vacilación a la Vacunación , Vacunas , Humanos , Estados Unidos , Vacunas/efectos adversosRESUMEN
Data from SIV-infected macaques indicate that virus-specific cytotoxic T lymphocytes (CTL) are mostly present in the extrafollicular (EF) compartment of the lymphoid tissue, with reduced homing to the follicular (F) site. This contributes to the majority of the virus being present in the follicle and represents a barrier to virus control. Using mathematical models, we investigate these dynamics. Two models are analyzed. The first assumes that CTL can only become stimulated and expand in the extrafollicular compartment, with migration accounting for the presence of CTL in the follicle. In the second model, follicular CTL can also undergo antigen-induced expansion. Consistent with experimental data, both models predict increased virus compartmentalization in the presence of stronger CTL responses and lower virus loads, and a more pronounced rise of extrafollicular compared to follicular virus during CD8 cell depletion experiments. The models, however, differ in other aspects. The follicular expansion model results in dynamics that promote the clearance of productive infection in the extrafollicular site, with any productively infected cells found being the result of immigration from the follicle. This is not observed in the model without follicular CTL expansion. The models further predict different consequences of introducing engineered, follicular-homing CTL, which has been proposed as a therapeutic means to improve virus control. Without follicular CTL expansion, this is predicted to result in a reduction of virus load in both compartments. The follicular CTL expansion model, however, makes the counter-intuitive prediction that addition of F-homing CTL not only results in a reduction of follicular virus load, but also in an increase in extrafollicular virus replication. These predictions remain to be experimentally tested, which will be relevant for distinguishing between models and for understanding how therapeutic introduction of F-homing CTL might impact the overall dynamics of the infection.
Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Linfocitos T Citotóxicos , Animales , Biología Computacional , Macaca , Modelos Inmunológicos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virologíaRESUMEN
Background: HIV posttreatment controllers are rare individuals who start antiretroviral therapy (ART), but maintain HIV suppression after treatment interruption. The frequency of posttreatment control and posttreatment interruption viral dynamics have not been well characterized. Methods: Posttreatment controllers were identified from 14 studies and defined as individuals who underwent treatment interruption with viral loads ≤400 copies/mL at two-thirds or more of time points for ≥24 weeks. Viral load and CD4+ cell dynamics were compared between posttreatment controllers and noncontrollers. Results: Of the 67 posttreatment controllers identified, 38 initiated ART during early HIV infection. Posttreatment controllers were more frequently identified in those treated during early versus chronic infection (13% vs 4%, P < .001). In posttreatment controllers with weekly viral load monitoring, 45% had a peak posttreatment interruption viral load of ≥1000 copies/mL and 33% had a peak viral load ≥10000 copies/mL. Of posttreatment controllers, 55% maintained HIV control for 2 years, with approximately 20% maintaining control for ≥5 years. Conclusions: Posttreatment control was more commonly identified amongst early treated individuals, frequently characterized by early transient viral rebound and heterogeneous durability of HIV remission. These results may provide mechanistic insights and have implications for the design of trials aimed at achieving HIV remission.
Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1 , Adulto , Recuento de Linfocito CD4 , Esquema de Medicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carga ViralRESUMEN
Follicular regulatory T (TFR) cells are a subset of CD4+ T cells in secondary lymphoid follicles. TFR cells were previously included in the follicular helper T (TFH) cell subset, which consists of cells that are highly permissive to HIV-1. The permissivity of TFR cells to HIV-1 is unknown. We find that TFR cells are more permissive than TFH cells to R5-tropic HIV-1 ex vivo TFR cells expressed more CCR5 and CD4 and supported higher frequencies of viral fusion. Differences in Ki67 expression correlated with HIV-1 replication. Inhibiting cellular proliferation reduced Ki67 expression and HIV-1 replication. Lymph node cells from untreated HIV-infected individuals revealed that TFR cells harbored the highest concentrations of HIV-1 RNA and highest levels of Ki67 expression. These data demonstrate that TFR cells are highly permissive to R5-tropic HIV-1 both ex vivo and in vivo This is likely related to elevated CCR5 levels combined with a heightened proliferative state and suggests that TFR cells contribute to persistent R5-tropic HIV-1 replication in vivoIMPORTANCE In chronic, untreated HIV-1 infection, viral replication is concentrated in secondary lymphoid follicles. Within secondary lymphoid follicles, follicular helper T (TFH) cells have previously been shown to be highly permissive to HIV-1. Recently, another subset of T cells in secondary lymphoid follicles was described, follicular regulatory T (TFR) cells. These cells share some phenotypic characteristics with TFH cells, and studies that showed that TFH cells are highly permissive to HIV-1 included TFR cells in their definition of TFH cells. The permissivity of TFR cells to HIV-1 has not previously been described. Here, we show that TFR cells are highly permissive to HIV-1 both ex vivo and in vivo The expression of Ki67, a marker of proliferative capacity, is predictive of expression of viral proteins, and downregulating Ki67 leads to concurrent decreases in expression of viral proteins. Our study provides new insight into HIV-1 replication and a potential new cell type to target for future treatment.
Asunto(s)
Infecciones por VIH/inmunología , VIH-1/fisiología , Linfocitos T Colaboradores-Inductores/virología , Linfocitos T Reguladores/virología , Tropismo Viral , Adulto , Anciano , Células Cultivadas , Niño , Femenino , Células HEK293 , Humanos , Antígeno Ki-67/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Masculino , Persona de Mediana Edad , Tonsila Palatina/citología , Tonsila Palatina/virología , Replicación ViralRESUMEN
During chronic HIV infection, viral replication is concentrated in secondary lymphoid follicles. Cytotoxic CD8 T cells control HIV replication in extrafollicular regions, but not in the follicle. Here, we show CXCR5hiCD44hiCD8 T cells are a regulatory subset differing from conventional CD8 T cells, and constitute the majority of CD8 T cells in the follicle. This subset, CD8 follicular regulatory T cells (CD8 TFR), expand in chronic SIV infection, exhibit enhanced expression of Tim-3 and IL-10, and express less perforin compared to conventional CD8 T cells. CD8 TFR modestly limit HIV replication in follicular helper T cells (TFH), impair TFH IL-21 production via Tim-3, and inhibit IgG production by B cells during ex vivo HIV infection. CD8 TFR induce TFH apoptosis through HLA-E, but induce less apoptosis than conventional CD8 T cells. These data demonstrate that a unique regulatory CD8 population exists in follicles that impairs GC function in HIV infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Centro Germinal/inmunología , Infecciones por VIH/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Macaca mulatta , Tonsila Palatina/inmunologíaRESUMEN
HIV-1 replication is concentrated within CD4(+) T cells in B cell follicles of secondary lymphoid tissues during asymptomatic disease. Limited data suggest that a subset of T follicular helper cells (TFH) within germinal centers (GC) is highly permissive to HIV-1. Whether GC TFH are the major HIV-1 virus-producing cells in vivo has not been established. In this study, we investigated TFH permissivity to HIV-1 ex vivo by spinoculating and culturing tonsil cells with HIV-1 GFP reporter viruses. Using flow cytometry, higher percentages of GC TFH (CXCR5(high)PD-1(high)) and CXCR5(+)programmed cell death-1 (PD-1)(low) cells were GFP(+) than non-GC TFH (CXCR5(+)PD-1(intermediate)) or extrafollicular (EF) (CXCR5(-)) cells. When sorted prior to spinoculation, however, GC TFH were substantially more permissive than CXCR5(+)PD-1(low) or EF cells, suggesting that many GC TFH transition to a CXCR5(+)PD-1(low) phenotype during productive infection. In situ hybridization on inguinal lymph node sections from untreated HIV-1-infected individuals without AIDS revealed higher frequencies of HIV-1 RNA(+) cells in GC than non-GC regions of follicle or EF regions. Superinfection of HIV-1-infected individuals' lymph node cells with GFP reporter virus confirmed the permissivity of follicular cells ex vivo. Lymph node immunostaining revealed 96% of CXCR5(+)CD4(+) cells were located in follicles. Within sorted lymph node cells from four HIV-infected individuals, CXCR5(+) subsets harbored 11-66-fold more HIV-1 RNA than CXCR5(-) subsets, as determined by RT PCR. Thus, GC TFH are highly permissive to HIV-1, but downregulate PD-1 and, to a lesser extent, CXCR5 during HIV-1 replication. These data further implicate GC TFH as the major HIV-1-producing cells in chronic asymptomatic HIV-1 infection.
Asunto(s)
Centro Germinal/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Enfermedades Asintomáticas , Diferenciación Celular , Células Cultivadas , Infecciones por VIH/virología , Especificidad del Huésped , Humanos , Tonsila Palatina/patología , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Sobreinfección , Linfocitos T Colaboradores-Inductores/virología , Replicación ViralRESUMEN
Human immunodeficiency virus (HIV)- and simian immunodeficiency virus (SIV)-specific CD8+ T cells are typically largely excluded from lymphoid B cell follicles, where HIV- and SIV-producing cells are most highly concentrated, indicating that B cell follicles are somewhat of an immunoprivileged site. To gain insights into virus-specific follicular CD8+ T cells, we determined the location and phenotype of follicular SIV-specific CD8+ T cells in situ, the local relationship of these cells to Foxp3+ cells, and the effects of CD8 depletion on levels of follicular SIV-producing cells in chronically SIV-infected rhesus macaques. We found that follicular SIV-specific CD8+ T cells were able to migrate throughout follicular areas, including germinal centers. Many expressed PD-1, indicating that they may have been exhausted. A small subset was in direct contact with and likely inhibited by Foxp3+ cells, and a few were themselves Foxp3+ In addition, subsets of follicular SIV-specific CD8+ T cells expressed low to medium levels of perforin, and subsets were activated and proliferating. Importantly, after CD8 depletion, the number of SIV-producing cells increased in B cell follicles and extrafollicular areas, suggesting that follicular and extrafollicular CD8+ T cells have a suppressive effect on SIV replication. Taken together, these results suggest that during chronic SIV infection, despite high levels of exhaustion and likely inhibition by Foxp3+ cells, a subset of follicular SIV-specific CD8+ T cells are functional and suppress viral replication in vivo These findings support HIV cure strategies that augment functional follicular virus-specific CD8+ T cells to enhance viral control. IMPORTANCE: HIV- and SIV-specific CD8+ T cells are typically largely excluded from lymphoid B cell follicles, where virus-producing cells are most highly concentrated, suggesting that B cell follicles are somewhat of an immunoprivileged site where virus-specific CD8+ T cells are not able to clear all follicular HIV- and SIV-producing cells. To gain insights into follicular CD8+ T cell function, we characterized follicular virus-specific CD8+ T cells in situ by using an SIV-infected rhesus macaque model of HIV. We found that subsets of follicular SIV-specific CD8+ T cells are able to migrate throughout the follicle, are likely inhibited by Foxp3+ cells, and are likely exhausted but that, nonetheless, subsets are likely functional, as they express markers consistent with effector function and show signs of suppressing viral replication in vivo These findings support HIV cure strategies that increase the frequency of functional follicular virus-specific CD8+ T cells.
Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Centro Germinal/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Movimiento Celular , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Centro Germinal/virología , Humanos , Depleción Linfocítica , Macaca mulatta , Masculino , Perforina/genética , Perforina/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Carga Viral , Replicación ViralRESUMEN
Eating at a time when the internal circadian clock promotes sleep is a novel risk factor for weight gain and obesity, yet little is known about mechanisms by which circadian misalignment leads to metabolic dysregulation in humans. We studied 14 adults in a 6-d inpatient simulated shiftwork protocol and quantified changes in energy expenditure, macronutrient utilization, appetitive hormones, sleep, and circadian phase during day versus nightshift work. We found that total daily energy expenditure increased by â¼4% on the transition day to the first nightshift, which consisted of an afternoon nap and extended wakefulness, whereas total daily energy expenditure decreased by â¼3% on each of the second and third nightshift days, which consisted of daytime sleep followed by afternoon and nighttime wakefulness. Contrary to expectations, energy expenditure decreased by â¼12-16% during scheduled daytime sleep opportunities despite disturbed sleep. The thermic effect of feeding also decreased in response to a late dinner on the first nightshift. Total daily fat utilization increased on the first and second nightshift days, contrary to expectations, and carbohydrate and protein utilization were reduced on the second nightshift day. Ratings of hunger were decreased during nightshift days despite decreases in 24-h levels of the satiety hormones leptin and peptide-YY. Findings suggest that reduced total daily energy expenditure during nightshift schedules and reduced energy expenditure in response to dinner represent contributing mechanisms by which humans working and eating during the biological night, when the circadian clock is promoting sleep, may increase the risk of weight gain and obesity.
Asunto(s)
Ritmo Circadiano/fisiología , Metabolismo Energético/fisiología , Fases del Sueño/fisiología , Tolerancia al Trabajo Programado/fisiología , Adulto , Análisis de Varianza , Ingestión de Alimentos/fisiología , Electromiografía , Femenino , Ghrelina/sangre , Humanos , Leptina/sangre , Masculino , Melatonina/metabolismo , Obesidad/sangre , Obesidad/metabolismo , Obesidad/fisiopatología , Péptido YY/sangre , Factores de Riesgo , Sueño/fisiología , Privación de Sueño/fisiopatología , Factores de Tiempo , Vigilia/fisiología , Aumento de Peso/fisiologíaRESUMEN
We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA(+) cells and SIV-specific CTL in situ in spleen, lymph nodes, and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS, SIV-producing cells were more concentrated in follicular (F) compared with extrafollicular (EF) regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with simian AIDS, which often have low-frequency CTL responses. SIV-specific CTL were consistently more concentrated within EF regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within F and EF compartments predicted SIV RNA(+) cells within these compartments in a mixed model. Few SIV-specific CTL expressed the F homing molecule CXCR5 in the absence of the EF retention molecule CCR7, possibly accounting for the paucity of F CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection.
Asunto(s)
Ganglios Linfáticos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Bazo/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos Virales/inmunología , Movimiento Celular , Células Cultivadas , Progresión de la Enfermedad , Macaca mulatta , ARN Viral/análisis , Receptores CCR7/metabolismo , Receptores CXCR5/metabolismo , Linfocitos T Citotóxicos/virología , Replicación ViralRESUMEN
UNLABELLED: Host and viral factors influence the HIV-1 infection course. Reduced Nef function has been observed in HIV-1 controllers during the chronic phase, but the kinetics and mechanisms of Nef attenuation in such individuals remain unclear. We examined plasma RNA-derived Nef clones from 10 recently infected individuals who subsequently suppressed viremia to less than 2,000 RNA copies/ml within 1 year postinfection (acute controllers) and 50 recently infected individuals who did not control viremia (acute progressors). Nef clones from acute controllers displayed a lesser ability to downregulate CD4 and HLA class I from the cell surface and a reduced ability to enhance virion infectivity compared to those from acute progressors (all P<0.01). HLA class I downregulation activity correlated inversely with days postinfection (Spearman's R=-0.85, P=0.004) and positively with baseline plasma viral load (Spearman's R=0.81, P=0.007) in acute controllers but not in acute progressors. Nef polymorphisms associated with functional changes over time were identified in follow-up samples from six controllers. For one such individual, mutational analyses indicated that four polymorphisms selected by HLA-A*31 and B*37 acted in combination to reduce Nef steady-state protein levels and HLA class I downregulation activity. Our results demonstrate that relative control of initial HIV-1 viremia is associated with Nef clones that display reduced function, which in turn may influence the course of HIV-1 infection. Transmission of impaired Nef sequences likely contributed in part to this observation; however, accumulation of HLA-associated polymorphisms in Nef that impair function also suggests that CD8+ T-cell pressures play a role in this phenomenon. IMPORTANCE: Rare individuals can spontaneously control HIV-1 viremia in the absence of antiretroviral treatment. Understanding the host and viral factors that contribute to the controller phenotype may identify new strategies to design effective vaccines or therapeutics. The HIV-1 Nef protein enhances viral pathogenesis through multiple mechanisms. We examined the function of plasma HIV-1 RNA-derived Nef clones isolated from 10 recently infected individuals who subsequently controlled HIV viremia compared to the function of those from 50 individuals who failed to control viremia. Our results demonstrate that early Nef clones from HIV controllers displayed lower HLA class I and CD4 downregulation activity, as well as a reduced ability to enhance virion infectivity. The accumulation of HLA-associated polymorphisms in Nef during the first year postinfection was associated with impaired protein function in some controllers. This report highlights the potential for host immune responses to modulate HIV pathogenicity and disease outcome by targeting cytotoxic T lymphocyte (CTL) epitopes in Nef.
Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Viremia/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/deficiencia , Antígenos CD4/análisis , Regulación hacia Abajo , Genotipo , VIH-1/genética , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Datos de Secuencia Molecular , Plasma/virología , Polimorfismo Genético , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN , Carga Viral , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1)-infected women have lower viral loads than men but similar rates of disease progression. We hypothesized that sex-based differences in CCR5 expression mediate viral load differences. METHODS: CCR5 was analyzed by flow cytometry in disaggregated lymph node cells from untreated HIV-1-infected women (n = 28) and men (n = 27). The frequencies of HIV-1 RNA-producing cells in the lymph node were determined by in situ hybridization. Linear and generalized linear regression models were used. RESULTS: The percentage of CCR5(+)CD3(+)CD4(+) cells was lower in women (mean, 12%) than men (mean, 16%; P = .034). Neither the percentage of CCR5(+)CD3(+)CD4(+) cells nor the CCR5 density predicted viral load or HIV-1 RNA-producing lymph node cells (P ≥ .24), after adjusting for CD4(+) T-cell count, race, and age. Women had marginally fewer HIV-1 RNA-producing cells (mean, 0.21 cells/mm(2)) than men (mean, 0.44 cells/mm(2); P = .046). After adjusting for the frequency of HIV-1 RNA-producing cells and potential confounders, the viral load in women were 0.46 log10 copies/mL lower than that in men (P = .018). CONCLUSIONS: Reduced lymph node CCR5 expression in women did not account for the viral load difference between sexes. CCR5 expression did not predict viral load or frequencies of HIV-1 RNA-producing cells, indicating that physiologic levels of CCR5 do not limit HIV-1 replication in lymph node. Less plasma virus was associated with each HIV-1 RNA-producing cell in women as compared to men, suggesting that women may either produce fewer virions per productively infected cell or more effectively clear extracellular virus.
Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Ganglios Linfáticos/metabolismo , Receptores CCR5/biosíntesis , Adulto , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Estudios de Cohortes , Femenino , Infecciones por VIH/virología , Humanos , Ganglios Linfáticos/virología , Activación de Linfocitos , Masculino , ARN Viral/sangre , Receptores CCR5/metabolismo , Factores Sexuales , Carga ViralRESUMEN
Nonhuman primate natural hosts for simian immunodeficiency viruses (SIV) develop a nonresolving chronic infection but do not develop AIDS. Mechanisms to explain the nonprogressive nature of SIV infection in natural hosts that underlie maintained high levels of plasma viremia without apparent loss of target cells remain unclear. Here we used comprehensive approaches (ie, FACS sorting, quantitative RT-PCR, immunohistochemistry, and in situ hybridization) to study viral infection within subsets of peripheral blood and lymphoid tissue (LT) CD4(+) T cells in cohorts of chronically SIV-infected rhesus macaques (RMs), HIV-infected humans, and SIVsmm-infected sooty mangabeys (SMs). We find: (1) infection frequencies among CD4(+) T cells in chronically SIV-infected RMs are significantly higher than those in SIVsmm-infected SMs; (2) infected cells are found in distinct anatomic LT niches and different CD4(+) T-cell subsets in SIV-infected RMs and SMs, with infection patterns of RMs reflecting HIV infection in humans; (3) T(FH) cells are infected at higher frequencies in RMs and humans than in SMs; and (4) LT viral burden, including follicular dendritic cell deposition of virus, is increased in RMs and humans compared with SMs. These data provide insights into how natural hosts are able to maintain high levels of plasma viremia while avoiding development of immunodeficiency.