RESUMEN
Recombinant human hyaluronidase PH20 (rHuPH20) facilitates subcutaneous (SC) delivery of co-administered therapeutic agents by locally and transiently degrading hyaluronan in the SC space, and can be administered with therapeutics using a variety of devices. Two SC delivery studies were carried out to assess auto-injector (AI) performance, each in 18 Yucatan miniature pigs. Abdominal injections were administered using three auto-injectors of 1 mL (AI1) and 2 mL (AI2 and sAI2) with different injection speeds and depths (5.5-7.5 mm) and two pre-filled syringe (PFS) devices of 1 and 2 mL. The injection included a placebo buffer with and without rHuPH20 to evaluate the effect of rHuPH20 on SC injection performance. The feasibility of using similar devices to deliver a placebo buffer in humans was investigated. rHuPH20 was not studied in humans. In miniature pigs, postinjection swelling was evident for most PFS/AI injections, particularly 2 mL. Swelling heights and back leakage were typically lower with rHuPH20 co-administration versus placebo for most device configurations (1 or 2 mL PFS or AI). Auto-injections with versus without rHuPH20 also resulted in reduced swelling firmness and faster swelling resolution over time. Slow injections with rHuPH20 had shorter and more consistent injection time versus placebo. In humans, minimal injection site swelling and negligible back leakage were observed for 2-mL injections of placebo, while more erythema was observed in humans versus miniature pigs. Even at high delivery rates with PFS or AI, the addition of rHuPH20 resulted in improved SC injection performance versus placebo in miniature pigs.
Asunto(s)
Hialuronoglucosaminidasa/administración & dosificación , Animales , Humanos , Inyecciones Subcutáneas , Masculino , Proteínas Recombinantes/administración & dosificación , Porcinos , Porcinos EnanosRESUMEN
Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.
Asunto(s)
Adenocarcinoma/patología , Líquido Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Animales , Líquido Extracelular/efectos de los fármacos , Ácido Hialurónico/farmacología , Presión Hidrostática , Ratones , Células 3T3 NIH , Neoplasias Pancreáticas/metabolismo , ViscosidadRESUMEN
Subcutaneous (SC) infusion of large volumes at rapid flow rates has historically been limited by the glycosaminoglycan hyaluronan (HA), which forms a barrier to bulk fluid flow in the SC space. Recombinant human hyaluronidase PH20 (rHuPH20) depolymerizes HA, temporarily eliminating this barrier to rapid SC delivery of large volume co-administered therapeutics. Using a miniature pig model, in-line pressure and applied force to the delivery hardware were measured when subcutaneously infusing a representative macromolecule (human polyclonal immunoglobulin [Ig]), at varying concentrations and viscosities (20-200 mg/mL), co-formulated with and without rHuPH20 (2000 U/mL and 5000 U/mL). Maximal flow rate (Qmax) was calculated as the flow rate producing a statistically significant difference in mean applied force between injections administered with or without rHuPH20. There was a significant reduction in mean applied force required for SC delivery of 100 mg/mL Ig solution with 5000 U/mL rHuPH20 versus Ig solution alone. Similar significant reductions in mean applied force were observed for most Ig solution concentrations, ranging from 25-200 mg/mL when administered with or without 2000 U/mL rHuPH20. Qmax was inversely proportional to Ig solution viscosity and Qmax for solutions co-formulated with 5000 U/mL rHuPH20 was approximately double that of 2000 U/mL rHuPH20 solutions. Mathematical simulation of a hypothetical 800 mg Ig dose co-formulated with rHuPH20 showed that delivery times <30 s could be achieved across a broad range of concentrations. Addition of rHuPH20 can help overcome volume and time constraints associated with SC administration across a range of concentrations in a dose-dependent manner.
Asunto(s)
Anticuerpos , Hialuronoglucosaminidasa , Humanos , Porcinos , Animales , Porcinos Enanos , Viscosidad , Simulación por Computador , Ácido HialurónicoRESUMEN
Impact energy tests are an efficient method of verifying adequate toughness of steel prior to it being put into service. Based on a multitude of historical correlations between impact energy and fracture toughness, minimum impact energy requirements that correspond to desired levels of fracture toughness are prescribed by steel bridge design specifications. Research characterizing the fracture behavior of grade 485 and 690 (70 and 100) high-performance steel utilized impact, fracture toughness, and crack arrest testing to verify adequate performance for bridge applications. Fracture toughness results from both quasi-static and dynamic stress intensity rate tests were analyzed using the most recently adopted master curve methodology. Both impact and fracture toughness tests indicated performance significantly greater than the minimum required by material specifications. Even at the AASHTO Zone III service temperature, which is significantly colder than prescribed test temperatures, minimum average impact energy requirements were greatly exceeded. All master curve reference temperatures, both for quasi-static and dynamic loading rates, were found to be colder than the Zone III minimum service temperature. Three correlations between impact energy and fracture toughness were evaluated and found to estimate reference temperatures that are conservative by 12 to 50 °C (22 to 90 °F) on average for the grades and specimen types tested. The evaluation of two reference temperature shifts intended to account for the loading rate was also performed and the results are discussed.
RESUMEN
INTRODUCTION: Subcutaneous (SC) formulations of therapeutics with recombinant human hyaluronidase PH20 (rHuPH20) are currently approved across various disease indications. The rHuPH20-mediated enzymatic degradation of SC hyaluronan (HA) facilitates bulk fluid flow and dispersion of co-administered therapeutics. However, current methods of quantifying dispersion in the SC space are limited. Here, a novel method is outlined to quantify and follow rapid SC volumetric dispersion of a representative therapeutic fluid in the presence of rHuPH20 using computed tomography (CT). METHODS: Ten Yucatan miniature swine were randomized to three groups. Animals received simultaneous infusions of contrast agent (CA) alone (left side of the animal) or in combination with rHuPH20 (right side) at infusion rates of 2.5, 5, or 10 mL/min. Spiral CT scans (1.5 mm thickness) were conducted before and after the infusion and at regular time intervals throughout. Scans were used to create three-dimensional (3D) reconstructions of the fluid pockets and analyze surface area, volume, and sphericity. RESULTS: 3D reconstruction showed increased dispersion of CA with rHuPH20 compared with CA alone, with fenestration and increased dispersion in the craniocaudal and lateromedial directions. The CA with rHuPH20 fluid pockets showed an average increase of 46% in surface area (p = 0.001), a 35% increase in volume (p = 0.001) and a 17% decrease in sphericity post-infusion compared with CA alone at 30 min post-infusion. DISCUSSION: This exploratory study confirms the value of CT imaging as a non-invasive method of assessing real-time spatial and temporal behavior of SC-administered fluids. This technique could help to assess the dispersion pattern of novel rHuPH20 SC co-formulations.
Asunto(s)
Moléculas de Adhesión Celular/farmacología , Tomografía Computarizada de Haz Cónico , Portadores de Fármacos/farmacología , Hialuronoglucosaminidasa/farmacología , Tejido Subcutáneo/diagnóstico por imagen , Distribución Tisular/efectos de los fármacos , Animales , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Estudios de Factibilidad , Femenino , Humanos , Infusiones Subcutáneas , Modelos Animales , Proteínas Recombinantes/farmacología , Análisis Espacio-Temporal , Tejido Subcutáneo/metabolismo , Porcinos , Porcinos EnanosRESUMEN
INTRODUCTION: There is currently no consensus in the literature concerning the impact of aging on the properties of hyaluronan (HA) in the subcutaneous (SC) space. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates SC administration of injected therapeutics by depolymerizing SC HA, facilitating bulk fluid flow, dispersion and absorption. This study assessed the impact of intrinsic aging on HA in the SC space and thus the ability of rHuPH20 to enhance delivery of co-administered therapeutics. METHODS: Histologic evaluations of HA levels and degradation were performed on human skin samples from six age groups, aged from 20 to 100 years. HA levels were evaluated by HA staining and degradation by staining samples for HA following incubation with rHuPH20. HA was extracted from samples and HA size determined by gel electrophoresis. Dermal reconstitution was assessed in young (aged 1.5 months) and elderly (aged > 16 months) mice. Baseline dye dispersion was measured at 5 and 20 min post-intradermal dye injection. Following treatment with rHuPH20, dye dispersion was measured again at 2, 24, 48, 72 and 96 h. RESULTS: Distribution of HA was confined to the interstitial space between adipocytes, with similar pericellular presence and levels of HA found across all age groups. Substantial levels of high-molecular-weight HA were observed in all age groups at baseline. Incubation with a clinically relevant dose of rHuPH20 resulted in degradation of all SC HA and similar degradation profiles independent of age. No difference in dye dispersion time was observed between young and elderly mice across the range of time points assessed, with dye dispersion returning to baseline levels by 24 h after rHuPH20 treatment. CONCLUSIONS: Subcutaneous delivery of approved therapeutics facilitated by co-administration with rHuPH20 should not be impacted by intrinsic aging, with this study providing no evidence for an effect of aging on HA distribution, structure or a loss of rHuPH20 efficacy.
RESUMEN
The demand for natural infant care products, including diapers, has increased. However, few disposable diapers have been able to provide the performance caregivers desire while also incorporating ingredients consistent with the "natural" category. In an examiner-blinded clinical study, the performance of a new cotton-enhanced diaper with high-performance materials was compared with an existing natural diaper offering. A total of 131 infants wore 1 of the 2 diapers for a 4-week period. Diaper performance was assessed based on skin marking assessments, scored by a trained grader, and incidence of diaper dermatitis. Skin grading for diaper dermatitis was assessed at 4 sites in the diaper area. The new diaper offering was associated with less skin marking and significantly less diaper rash at the genitals and intertriginous regions versus the comparator. These data suggest that the new diaper provided significant improvement in both skin marking and prevalence of diaper rash.
Asunto(s)
Fibra de Algodón , Dermatitis del Pañal/prevención & control , Pañales Infantiles , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ensayo de MaterialesRESUMEN
OBJECTIVE: Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. METHODS: Steady-state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. RESULTS: BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. INTERPRETATION: We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, "BTH" effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.
RESUMEN
BACKGROUND: Previous works indicate a compromised skin model may be a possible surrogate for premature, undeveloped skin. OBJECTIVES: This study was performed to investigate the use of a current model as a surrogate test design. METHODS: Serial tape stripping on the volar forearms of adult female volunteers (n = 36) was used to "thin" the stratum corneum. The forearm sites received intensive applications of different wiping options that exaggerated the exposures to cleansers that might be experienced by an infant in a neonatal intensive care unit. The recovery of skin barrier function during the wiping regimen, measured by transepidermal water loss (TEWL), was used as the primary indicator of the mildness of the cleansing options. Measurements of TEWL were made prior to the first wash on days 1-4, on day 5 and on day 8. Erythema was graded as a secondary endpoint. RESULTS: There was an early and sustained distinction in rates of skin barrier recovery between the washcloth and water treatment, and the two wipes treatments (P < 0.05). Areas submitted to the wipes treatments showed recovery rates similar to that of the tape-stripped untreated site, indicating that the use of disposable wipes led to minimal perturbation of the recovery process. By contrast, cleansing with a cotton washcloth and water markedly perturbed the repair process compared with all other conditions (P < 0.05). CONCLUSIONS: This model shows promise as a possible surrogate model for assessing the mildness of skin cleansing products for the care of premature infants.
Asunto(s)
Detergentes/uso terapéutico , Epidermis/efectos de los fármacos , Cuidados de la Piel , Humanos , Recién Nacido , Recien Nacido Prematuro , Ensayo de Materiales , Pérdida Insensible de AguaRESUMEN
Using our model to grow superficial human bladder cancer in the mouse bladder, we have found that the polyamide compound, Syn3, when injected intravesically for 1 hour at 1 mg/mL on two consecutive days, markedly increases rAd-beta-gal intravesical gene transfer and expression. This enhanced transgene expression was much greater than obtain by the use of 22% ethanol, which had previously been shown to increase intravesical adenoviral gene transfer, whereas little or no gene expression was seen with exposure to only rAd-beta-gal. beta-Galactosidase staining was seen in virtually every normal urothelial and superficial tumor cell present, including tumors that express little or no coxsackie-adenovirus receptors when Syn3 was present. High adenoviral-mediated gene transfer was also documented in the pig bladder using Syn3 in a similar protocol. Therefore, Syn3 may overcome the limitations of adequate intravesical adenoviral-mediated gene transfer and, when combined with an appropriate adenoviral-mediated gene, could offer an effective approach to the treatment of superficial bladder cancer and perhaps even genetically altered precursor lesions.
Asunto(s)
Adenoviridae/genética , Ácidos Cólicos/administración & dosificación , Disacáridos/administración & dosificación , Terapia Genética , Transfección , Urotelio/metabolismo , Animales , Femenino , Vectores Genéticos , Humanos , Ratones , Ratones Desnudos , Porcinos , Células Tumorales CultivadasRESUMEN
Hyaluronan (HA) is a glycosaminoglycan polymer that often accumulates in malignancy. Megadalton complexes of HA with proteoglycans create a hydrated connective tissue matrix, which may play an important role in tumor stroma formation. Through its colloid osmotic effects, HA complexes contribute to tumor interstitial fluid pressure, limiting the effect of therapeutic molecules on malignant cells. The therapeutic potential of enzymatic remodeling of the tumor microenvironment through HA depletion was initially investigated using a recombinant human HA-degrading enzyme, rHuPH20, which removed HA-dependent tumor cell extracellular matrices in vitro. However, rHuPH20 showed a short serum half-life (t(1/2) < 3 minutes), making depletion of tumor HA in vivo impractical. A pegylated variant of rHuPH20, PEGPH20, was therefore evaluated. Pegylation improved serum half-life (t(1/2) = 10.3 hours), making it feasible to probe the effects of sustained HA depletion on tumor physiology. In high-HA prostate PC3 tumors, i.v. administration of PEGPH20 depleted tumor HA, decreased tumor interstitial fluid pressure by 84%, decreased water content by 7%, decompressed tumor vessels, and increased tumor vascular area >3-fold. Following repeat PEGPH20 administration, tumor growth was significantly inhibited (tumor growth inhibition, 70%). Furthermore, PEGPH20 enhanced both docetaxel and liposomal doxorubicin activity in PC3 tumors (P < 0.05) but did not significantly improve the activity of docetaxel in low-HA prostate DU145 tumors. The ability of PEGPH20 to enhance chemotherapy efficacy is likely due to increased drug perfusion combined with other tumor structural changes. These results support enzymatic remodeling of the tumor stroma with PEGPH20 to treat tumors characterized by the accumulation of HA.
Asunto(s)
Antineoplásicos/uso terapéutico , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/farmacología , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/farmacología , Animales , Antineoplásicos/administración & dosificación , Células CHO , Moléculas de Adhesión Celular/administración & dosificación , Moléculas de Adhesión Celular/farmacocinética , Cricetinae , Cricetulus , Sinergismo Farmacológico , Humanos , Hialuronoglucosaminidasa/administración & dosificación , Hialuronoglucosaminidasa/farmacocinética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Desnudos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Células Tumorales Cultivadas , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVES: To evaluate whether a recombinant replication-deficient adenovirus containing the secreted human interferon alpha-2b gene (rAd-IFN) could improve the tissue and urine levels of IFN protein by transducing the urothelium with the secreted human IFN-alpha gene. We also assessed whether varying the interval between rAd-IFN/Syn3 treatments would improve the duration and levels of gene expression. METHODS: The rats received intravesical administration of rAd-IFN at varying concentrations in a formulation containing Syn3, an agent identified that facilitates passage of the adenovirus through the protective barrier of the bladder. Urine was collected daily for 7 days, and human IFN was measured in the urine by enzyme-linked immunosorbent assay. For the redosing studies, the animals received a second dose at varying intervals ranging from 1 to 7 days after the first dose or at longer intervals (30, 60, or 90 days). RESULTS: Rats that received intravesical administration of rAd-IFN in a Syn3 formulation expressed levels of human IFN protein in their urine at peak concentrations of 50,000 to 100,000 pg/mL, but were undetectable by 7 days. Expression was localized to the bladder with only minimal systemic exposure to IFN. Short-term redosing marginally improved the IFN urine concentrations, with maximal levels achieved when a second dose was administered 3 days after a first dose. Although gene expression was attenuated when a second dose was given 5 to 7 days after the first treatment, the levels and duration of IFN expression recovered when the interval was increased to 90 days. CONCLUSIONS: Intravesical treatment with rAd-IFN facilitates high levels of IFN transgene exposure and may be a new approach to treating superficial bladder cancer.
Asunto(s)
Interferón-alfa/administración & dosificación , Interferón-alfa/genética , Vejiga Urinaria , Adenoviridae/genética , Animales , Relación Dosis-Respuesta a Droga , Portadores de Fármacos , Femenino , Interferón alfa-2 , Ratas , Ratas Sprague-Dawley , Proteínas RecombinantesRESUMEN
We have produced prolonged, high local concentrations of interferon in vivo by intravesical instillation of adenoviruses encoding interferon-alpha (Ad-IFNalpha) together with the gene transfer-enhancing agent Syn3. We found sustained interferon protein levels for days, both in normal mouse urothelium and in human bladder cancer cells growing as superficial bladder tumors in nude mice using an orthotopic bladder model developed by us. Tumor burden in the bladder was determined utilizing cancer cells containing the green fluorescent protein. Marked tumor regression was observed following two 1-h exposures of Ad-IFNalpha/Syn3 and little or no cytotoxicity was detected in normal cells. Similar intravesical instillation of clinically relevant concentrations of IFN protein alone or Ad-IFNalpha without Syn3 was ineffective. Surprisingly, in vitro, Ad-IFNalpha also caused caspase-dependent death of bladder cancer cell lines that were resistant to high concentrations of IFN-alpha protein, including the cell line used in vivo. These findings demonstrate that Ad-IFNalpha can overcome resistance to IFN-alpha protein both in vitro and in vivo and support evaluation of intravesical Ad-IFNalpha/Syn3 for the treatment of superficial bladder cancer.