Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(15): 4489-4492, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575103

RESUMEN

The Southern Polar Region (Antarctica and the Southern Ocean) is threatened by climate change, and ocean warming and acidification. Reducing climate risks through direct human interventions in the region or through biological adaptation is not possible. Resilience of the region to global warming needs the establishment of climate refugia and science-based, climate-informed, ecosystem-based management, but long-term conservation will only be assured by global reduction in greenhouse gas emissions.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Cambio Climático , Clima Frío , Gases de Efecto Invernadero/efectos adversos , Humanos , Políticas
2.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629799

RESUMEN

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Asunto(s)
Arrecifes de Coral , Ecosistema , Regiones Antárticas , Biodiversidad , Cambio Climático , Humanos
3.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24802817

RESUMEN

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Cubierta de Hielo , Regiones Antárticas , Biota , Ecosistema , Océanos y Mares , Movimientos del Agua , Viento
4.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34566277

RESUMEN

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA